Skip to main content

Surgical Procedures and Experimental Outcomes of Closed Fractures in Rodent Models

  • Protocol
  • First Online:
Osteoporosis and Osteoarthritis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1226))

Abstract

The closed fracture rat model, first described by Bonnarens and Einhorn, has been widely implemented in recent years to characterize various fracture phenotypes and evaluate treatment modalities. Slight modifications in the fixation depth, to reduce surgical error associated with movement/dislocation of the k-wire fixation, were previously described. Here, we describe this method which involves the creation of a medial parapatellar incision, dislocation of the patella, boring an 18 gauge hole through the center of the femur, delivery of an adjunct (if applicable), fixation of the k-wire in the greater trochanter of the femur, suturing of muscle and skin, and finally creation of the mid-diaphyseal fracture with a three-point bending fracture device. Many laboratories routinely perform surgical procedures in which a closed fracture is induced using rat or mouse models. The benefits of such surgical models range from general orthopaedic trauma applications to the assessment of the healing process in genetically modified animals. Other important applications include the assessment of the safety and efficacy of various treatment modalities as well as the characterization of bone repair in metabolic bone diseases or skeletal dysplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnarens F, Einhorn TA (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2:97–101

    Article  CAS  PubMed  Google Scholar 

  2. Paglia DN, Wey A, Vaidya S et al (2013) Effects of local insulin delivery on subperiosteal angiogenesis and mineralized tissue formation during fracture healing. J Orthop Res 31:783–791

    Article  CAS  PubMed  Google Scholar 

  3. Park AG, Paglia DN, Al-Zube L et al (2013) Local insulin therapy affects fracture healing in a rat model. J Orthop Res 31:776–782

    Article  CAS  PubMed  Google Scholar 

  4. Paglia DN, Wey A, Park AG et al (2012) The effects of local vanadium treatment on angiogenesis and chondrogenesis during fracture healing. J Orthop Res 30:1971–1978

    Article  CAS  PubMed  Google Scholar 

  5. Bergenstock M, Min W, Simon AM et al (2005) A comparison between the effects of acetominophen and celecoxib on bone fracture healing in rats. J Orthop Trauma 19:717–723

    Article  PubMed  Google Scholar 

  6. Schmidmaier G, Wildemann B, Gabelein T et al (2003) Synergistic effect of IGF-I and TGF-beta1 on fracture healing in rats: single versus combined application of IGF-I and TGF-beta1. Acta Orthop Scand 74:604–610

    Article  PubMed  Google Scholar 

  7. Schmidmaier G, Wildemann B, Ostapowicz D et al (2004) Long-term effects of local growth factor (IGF-I and TGF-beta 1) treatment on fracture healing. A safety study for using growth factors. J Orthop Res 22:514–519

    Article  CAS  PubMed  Google Scholar 

  8. Kayal RA, Tsatsas D, Bauer MA et al (2007) Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res 22:560–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kayal RA, Alblowi J, McKenzie E et al (2009) Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone 44:357–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Soung DY, Talebian L, Matheny CJ et al (2012) Runx1 dose-dependently regulates endochondral ossification during skeletal development and fracture healing. J Bone Miner Res 27:1585–1597

    Article  CAS  PubMed Central  Google Scholar 

  11. Soung DY, Gentile MA, Duong LT et al (2013) Effects of pharmacological inhibition of cathepsin K on fracture repair in mice. Bone 55:248–255

    Article  CAS  Google Scholar 

  12. Clifton K, Soung DY, Gibson J et al (2012) Gene array analyses reveal distinct expression patterns in the osteoclast and chondroclast populations within a fracture callus. ASBMR 2012 annual meeting, Minneapolis, MN. Presentation Number: LB-MO13

    Google Scholar 

  13. Gerstenfeld LC, Einhorn TA (2003) Developmental aspects of fracture healing and the use of pharmacological agents to alter healing. J Musculoskelet Neuronal Interact 3:297–303

    CAS  PubMed  Google Scholar 

  14. Gandhi A, Beam HA, O’Connor JP et al (2005) The effects of local insulin delivery on diabetic fracture healing. Bone 37:482–490

    Article  CAS  PubMed  Google Scholar 

  15. Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90:99–110

    Article  PubMed  Google Scholar 

  16. Takahata M, Awad HA, O’Keefe RJ et al (2012) Endogenous tissue engineering: PTH therapy for skeletal repair. Cell Tissue Res 347:545–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Graves DT, Alblowi J, Paglia DN et al (2011) Impact of diabetes on fracture healing. J Exp Clin Med 3:3–8

    Article  Google Scholar 

  18. Wu X, Chen S, He Y et al (2011) The haploinsufficient hematopoietic microenvironment is critical to the pathological fracture repair in murine models of neurofibromatosis type 1. PLoS One 6:e24917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gerstenfeld LC, Cullinane DM, Barnes GL et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    Article  CAS  PubMed  Google Scholar 

  20. Tami AE, Nasser P, Schaffler MB et al (2003) Noninvasive fatigue fracture model of the rat ulna. J Orthop Res 21:1018–1024

    Article  CAS  PubMed  Google Scholar 

  21. Schaffler MB, Kennedy OD (2012) Osteocyte signaling in bone. Curr Osteoporos Rep 10:118–125

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang X, Awad HA, O’Keefe RJ et al (2008) A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 466:1777–1787

    Article  PubMed Central  PubMed  Google Scholar 

  23. Balaburski G, O’Connor JP (2003) Determination of variations in gene expression during fracture healing. Acta Orthop Scand 74:22–30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Drissi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media. New York

About this protocol

Cite this protocol

Drissi, H., Paglia, D.N. (2015). Surgical Procedures and Experimental Outcomes of Closed Fractures in Rodent Models. In: Westendorf, J., van Wijnen, A. (eds) Osteoporosis and Osteoarthritis. Methods in Molecular Biology, vol 1226. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1619-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1619-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1618-4

  • Online ISBN: 978-1-4939-1619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics