Skip to main content

Genomic Applications in Colorectal and Pancreatic Tumors

  • Chapter
  • First Online:
Genomic Applications in Pathology
  • 2135 Accesses

Abstract

Colorectal cancer is one of the most common tumors in the Western world. Prior groundbreaking findings based on meticulous single gene analysis of colorectal tumors elucidated the progression from adenoma to invasive carcinoma in a multistep process driven by the accumulation of mutations in tumor suppressor genes (APC, p53, SMAD4) and oncogenes (KRAS). More recent high-throughput molecular genomic techniques confirmed the multistep model in the majority of sporadic colorectal cancers whereas smaller subgroup develop via different route, mostly initiated by a mutation in the BRAF oncogene, that results in oncogene-induced senescence (OIS) and the development of the gene methylator phenotype CIMP (CpG island methylator phenotype). Next-generation sequencing enables a more robust molecular classification of colorectal cancer, as well as pancreatic cancer. As a better understanding of the genetic alterations in pancreatic cancer emerges, it is becoming clear that a new molecular-based classification is possible. This classification would complement the morphologic classification system that has been developed and tested and integrates morphology and molecular findings into a cohesive system with prognostic and therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayr E, Bock W. Classifications and other ordering systems. J Zool Syst Evol Res. 2002;40:169–94.

    Google Scholar 

  2. Gao P, Song YX, Wang ZN, Xu YY, Tong LL, Sun JX, et al. Is the prediction of prognosis not improved by the seventh edition of the TNM classification for colorectal cancer? Analysis of the surveilla006Ece, epidemiology, and end results (SEER) database. BMC Cancer. 2013;13:123.

    PubMed  PubMed Central  Google Scholar 

  3. The Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Google Scholar 

  4. Wolpert L. In: Principles of development. 2. revised ed. Oxford University Press; 2001.

    Google Scholar 

  5. de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769–80.

    PubMed  Google Scholar 

  6. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    PubMed  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    PubMed  CAS  Google Scholar 

  9. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    PubMed  CAS  Google Scholar 

  11. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    PubMed  CAS  Google Scholar 

  12. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3:433–8.

    PubMed  CAS  Google Scholar 

  13. Janssen KP, el-Marjou F, Pinto D, Sastre X, Rouillard D, Fouquet C, et al. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology. 2002;123:492–504.

    PubMed  CAS  Google Scholar 

  14. Halberg RB, Katzung DS, Hoff PD, Moser AR, Cole CE, Lubet RA, et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc Natl Acad Sci U S A. 2000;97:3461–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    PubMed  CAS  Google Scholar 

  16. Harris H. Tumour suppression: putting on the brakes. Nature. 2004;427:201.

    PubMed  CAS  Google Scholar 

  17. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12.

    PubMed  CAS  Google Scholar 

  18. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.

    PubMed  CAS  Google Scholar 

  20. Wassermann S, Scheel SK, Hiendlmeyer E, Palmqvist R, Horst D, Hlubek F, et al. p16INK4a is a beta-catenin target gene and indicates low survival in human colorectal tumors. Gastroenterology. 2009;136:196–205.e2.

    PubMed  CAS  Google Scholar 

  21. Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336:1549–54.

    PubMed  CAS  Google Scholar 

  22. Jaitner S, Reiche JA, Schaffauer AJ, Hiendlmeyer E, Herbst H, Brabletz T, et al. Human telomerase reverse transcriptase (hTERT) is a target gene of beta-catenin in human colorectal tumors. Cell Cycle. 2012;11.

    Google Scholar 

  23. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 2003;163:847–57.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T. Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer. 2004;108:321–6.

    PubMed  CAS  Google Scholar 

  25. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68:537–44.

    PubMed  CAS  Google Scholar 

  26. Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol. 1999;19:5576–87.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.

    PubMed  CAS  Google Scholar 

  28. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol. 1999;155:1033–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Hlubek F, Jung A, Kotzor N, Kirchner T, Brabletz T. Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res. 2001;61:8089–93.

    PubMed  CAS  Google Scholar 

  30. Hiendlmeyer E, Regus S, Wassermann S, Hlubek F, Haynl A, Dimmler A, et al. Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res. 2004;64:1209–14.

    PubMed  CAS  Google Scholar 

  31. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, et al. Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A. 1999;96:1603–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Beiter K, Hiendlmeyer E, Brabletz T, Hlubek F, Haynl A, Knoll C, et al. beta-Catenin regulates the expression of tenascin-C in human colorectal tumors. Oncogene. 2005;24:8200–4.

    PubMed  CAS  Google Scholar 

  33. Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154:515–23.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Hatzis P, van der Flier LG, van Driel MA, Guryev V, Nielsen F, Denissov S, et al. Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol. 2008;28:2732–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    PubMed  CAS  Google Scholar 

  36. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.

    PubMed  CAS  Google Scholar 

  37. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.

    PubMed  CAS  Google Scholar 

  38. Brembeck FH, Schwarz-Romond T, Bakkers J, Wilhelm S, Hammerschmidt M, Birchmeier W. Essential role of BCL9-2 in the switch between beta-catenin’s adhesive and transcriptional functions. Genes Dev. 2004;18:2225–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Brabletz T. To differentiate or not—routes towards metastasis. Nat Rev Cancer. 2012;12:425–36.

    PubMed  CAS  Google Scholar 

  41. Neumann J, Horst D, Kriegl L, Maatz S, Engel J, Jung A, et al. A simple immunohistochemical algorithm predicts the risk of distant metastases in right-sided colon cancer. Histopathology. 2012;60:416–26.

    PubMed  Google Scholar 

  42. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1:55–67.

    PubMed  CAS  Google Scholar 

  43. Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, et al. Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer. 2001;93:6–11.

    PubMed  CAS  Google Scholar 

  44. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488:660–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Funkhouser Jr WK, Lubin IM, Monzon FA, Zehnbauer BA, Evans JP, Ogino S, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14:91–103.

    PubMed  CAS  Google Scholar 

  46. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85:27–37.

    PubMed  CAS  Google Scholar 

  47. Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ, et al. V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med. 2010;2:458–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Rad R, Cadinanos J, Rad L, Varela I, Strong A, Kriegl L, et al. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell. 2013;24:15–29.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A, et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell. 2010;18:135–46.

    PubMed  CAS  Google Scholar 

  50. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–30.

    PubMed  CAS  Google Scholar 

  51. Rex DK, Ahnen DJ, Baron JA, Batts KP, Burke CA, Burt RW, et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. Am J Gastroenterol. 2012;107:1315–29. quiz 4, 30.

    PubMed  PubMed Central  Google Scholar 

  52. Malesci A, Laghi L, Bianchi P, Delconte G, Randolph A, Torri V, et al. Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res. 2007;13:3831–9.

    PubMed  CAS  Google Scholar 

  53. Rosty C, Chazal M, Etienne MC, Letoublon C, Bourgeon A, Delpero JR, et al. Determination of microsatellite instability, p53 and K-RAS mutations in hepatic metastases from patients with colorectal cancer: relationship with response to 5-fluorouracil and survival. Int J Cancer. 2001;95:162–7.

    PubMed  CAS  Google Scholar 

  54. Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, et al. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut. 2006;55:848–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB, et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology. 1999;117:123–31.

    PubMed  CAS  Google Scholar 

  56. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    PubMed  CAS  Google Scholar 

  57. Sampson JR, Dolwani S, Jones S, Eccles D, Ellis A, Evans DG, et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet. 2003;362:39–41.

    PubMed  CAS  Google Scholar 

  58. Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RK, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348:791–9.

    PubMed  Google Scholar 

  59. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.

    PubMed  Google Scholar 

  61. Wood HM, Belvedere O, Conway C, Daly C, Chalkley R, Bickerdike M, et al. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. Nucleic Acids Res. 2010;38:e151.

    PubMed  PubMed Central  Google Scholar 

  62. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.

    PubMed  CAS  Google Scholar 

  63. Zhang L, Yu J, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Short mononucleotide repeat sequence variability in mismatch repair-deficient cancers. Cancer Res. 2001;61:3801–5.

    PubMed  CAS  Google Scholar 

  64. Ruckert S, Hiendlmeyer E, Brueckl WM, Oswald U, Beyser K, Dietmaier W, et al. T-cell factor-4 frameshift mutations occur frequently in human microsatellite instability-high colorectal carcinomas but do not contribute to carcinogenesis. Cancer Res. 2002;62:3009–13.

    PubMed  CAS  Google Scholar 

  65. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8:976–90.

    PubMed  CAS  Google Scholar 

  66. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–41.

    PubMed  CAS  Google Scholar 

  67. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    PubMed  CAS  Google Scholar 

  68. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    PubMed  CAS  Google Scholar 

  69. Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK, et al. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques. 2004;36:1030–7.

    PubMed  CAS  Google Scholar 

  70. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    PubMed  CAS  Google Scholar 

  72. Hlubek F, Brabletz T, Budczies J, Pfeiffer S, Jung A, Kirchner T. Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer. 2007;121:1941–8.

    PubMed  CAS  Google Scholar 

  73. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology. 1999;116:1453–6.

    PubMed  CAS  Google Scholar 

  74. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Greenson JK, Huang SC, Herron C, Moreno V, Bonner JD, Tomsho LP, Ben-Izhak O, Cohen HI, Trougouboff P, Bejhar J, Sova Y, Pinchev M, Rennert G, Gruber SB. Pathologic predictors of microsatellite instability in colorectal cancer. Am J Surg Pathol. 2009;33:126–33.

    PubMed  PubMed Central  Google Scholar 

  76. Cicek M, Lindor N, Gallinger S, Bapat B, Hopper J, Jenkins M, Young J, Buchanan D, Walsh M, Le Marchand L, Burnett T, Newcomb P, Grady W, Haile R, Casey G, Plummer S, Krumroy L, Baron J, Thibodeau S. Quality assessment and correlation of MSI and IHC markers among population- and clinic-based colorectal tumors. J Mol Diagn. 2011;13(3):271–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.

    PubMed  CAS  Google Scholar 

  78. Cunningham JM, Kim CY, Christensen ER, Tester DJ, Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid DJ, Walsh Vockley C, Kubly V, Nelson H, Michels VV, Thibodeau SN. The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am J Hum Genet. 2001;69:780–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Debniak T, Kurzawski G, Gorski B, Kladny J, Domagala W, Lubinski J. Value of pedigree/clinical data, immunohistochemistry and microsatellite instability analyses in reducing the cost of determining hMLH1 and hMSH2 gene mutations in patients with colorectal cancer. Eur J Cancer. 2000;36:49–54.

    PubMed  CAS  Google Scholar 

  80. Pinol V, Castells A, Andreu M, Castellvi-Bel S, Alenda C, Llor X, Xicola RM, Rodriguez-Moranta F, Paya A, Jover R, Bessa X. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA. 2005;293:1986–94.

    PubMed  CAS  Google Scholar 

  81. Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11:42–65.

    PubMed  PubMed Central  Google Scholar 

  82. Barnetson RA, Tenesa A, Farrington SM, Nicholl ID, Cetnarskyj R, Porteous ME, Campbell H, Dunlop MG. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med. 2006;354:2751–63.

    PubMed  CAS  Google Scholar 

  83. Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Côté JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    PubMed  Google Scholar 

  84. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    PubMed  CAS  Google Scholar 

  85. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27:663–71.

    PubMed  CAS  Google Scholar 

  86. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–13.

    PubMed  CAS  Google Scholar 

  87. Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–9.

    PubMed  Google Scholar 

  88. Douillard J-Y, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 Treatment and RAS Mutations in Colorectal Cancer. N Engl J Med. 2013;369:1023.

    PubMed  CAS  Google Scholar 

  89. Oliner K, Juan T, Suggs S, Wolf M, Sarosi I, Freeman DJ, et al. A comparability study of 5 commercial KRAS tests. Diagn Pathol. 2010;5:23.

    PubMed  PubMed Central  Google Scholar 

  90. Tol J, Dijkstra JR, Vink-Borger ME, Nagtegaal ID, Punt CJ, van Krieken JH, Ligtenberg MJ. High sensitivity of both sequencing and real-time PCR analysis of KRAS mutations in colorectal cancer tissue. J Cell Mol Med. 2010;14:2122–31.

    PubMed  CAS  Google Scholar 

  91. Spittle C, Ward MR, Nathanson KL, Gimotty PA, Rappaport E, Brose MS, Medina A, Letrero R, Herlyn M, Edwards RH. Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J Mol Diagn. 2007;9:464–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Dufort S, Richard MJ, de Fraipont F. Pyrosequencing method to detect KRAS mutation in formalin-fixed and paraffin-embedded tumor tissues. Anal Biochem. 2009;391:166–8.

    PubMed  CAS  Google Scholar 

  93. Pichler M, Balic M, Stadelmeyer E, Ausch C, Wild M, Guelly C, Bauernhofer T, Samonigg H, Hoefler G, Dandachi N. Evaluation of high-resolution melting analysis as a diagnostic tool to detect the BRAF V600E mutation in colorectal tumors. J Mol Diagn. 2009;11:40–147.

    Google Scholar 

  94. Do H, Krypuy M, Mitchell PL, Fox SB, Dobrovic A. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer. 2008;8:142.

    PubMed  PubMed Central  Google Scholar 

  95. Lang AH, Drexel H, Geller-Rhomberg S, et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J Mol Diagn. 2011;13:23–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Querings S, Altmuller J, Ansen S, Zander T, Seidel D, Gabler F, et al. Benchmarking of mutation diagnostics in clinical lung cancer specimens. PLoS One. 2011;6:e19601.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. van Krieken JH, Siebers AG, Normanno N, Quality Assurance for Molecular Pathology group. European consensus conference for external quality assessment in molecular pathology. Ann Oncol. 2013;24:1958–63.

    PubMed  Google Scholar 

  98. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science. 2005;310:1504–10.

    PubMed  CAS  Google Scholar 

  99. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001;1:11–21.

    PubMed  CAS  Google Scholar 

  100. Neumann J, Wehweck L, Maatz S, Engel J, Kirchner T, Jung A. Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Arch. 2013;463:509–23.

    PubMed  CAS  Google Scholar 

  101. Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367:1596–606.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Mizushima T, Ide Y, Murata K, Ohashi I, Yasumasa K, Fukunaga M, Takemoto H, Tamagawa H, Hasegawa J, Hata T, Takemasa I, Ikeda M, Yamamoto H, Sekimoto M, Nezu R, Doki Y, Mori M. A phase II study of combined chemotherapy with 5-week cycles of S-1 and CPT-11 plus bevacizumab in patients with metastatic colon cancer. Oncology. 2013;85(6):317–22. [Epub ahead of print] PubMed PMID: 24247419.

    PubMed  CAS  Google Scholar 

  103. Vargas GM, Sheffield KM, Parmar AD, Han Y, Gajjar A, Brown KM, Riall TS. Trends in treatment and survival in older patients resenting with stage IV colorectal cancer. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 2014;18:369–77.

    Google Scholar 

  104. Pogue-Geile K, Yothers G, Taniyama Y, Tanaka N, Gavin P, Colangelo L, Blackmon N, Lipchik C, Kim SR, Sharif S, Allegra C, Petrelli N, O’Connell MJ, Wolmark N, Paik S. Defective mismatch repair and benefit from bevacizumab for colon cancer: findings from NSABP C-08. J Natl Cancer Inst. 2013;105(13):989–92. doi:10.1093/jnci/djt140. PubMed PMID: 23821759. PubMed Central PMCID: PMC3699439.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Shi C, Daniels JA, Hruban RH. Molecular characterization of pancreatic neoplasms. Adv Anat Pathol. 2008;15:185–95.

    PubMed  CAS  Google Scholar 

  106. Wood LD, Hruban RH. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 2012;18:492–501.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Cubilla AL, Fitzgerald PJ. In: Tumors of the exocrine pancreas. Vol. 2nd series. Washington, DC: Armed Forces Institute of Pathology; 1984. p.

    Google Scholar 

  108. Banville N, Geraghty R, Fox E, Leahy DT, Green A, Keegan D, et al. Medullary carcinoma of the pancreas in a man with hereditary nonpolyposis colorectal cancer due to a mutation of the MSH2 mismatch repair gene. Hum Pathol. 2006;37:1498–502.

    PubMed  CAS  Google Scholar 

  109. Calhoun ES, Jones JB, Ashfaq R, Adsay NV, Baker SJ, Valentine V, et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol. 2003;163:1255–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Goggins M, Offerhaus GJ, Hilgers W, Griffin CA, Shekher M, Tang D, et al. Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER +. Am J Pathol. 1998;152:1501–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Wilentz RE, Goggins M, Redston M, Marcus VA, Adsay NV, Sohn TA, et al. Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity. Am J Pathol. 2000;156:1641–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Winter JM, Ting AH, Vilardell F, Gallmeier E, Baylin SB, Hruban RH, et al. Absence of E-cadherin expression distinguishes noncohesive from cohesive pancreatic cancer. Clin Cancer Res. 2008;14:412–8.

    PubMed  CAS  Google Scholar 

  113. Wei CH, Gorgan TR, Elashoff DA, Hines OJ, Farrell JJ, Donahue TR. A meta-analysis of gemcitabine biomarkers in patients with pancreaticobiliary cancers. Pancreas. 2013;42:1303–10.

    PubMed  CAS  Google Scholar 

  114. Lowery MA, Kelsen DP, Stadler ZK, Yu KH, Janjigian YY, Ludwig E, et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist. 2011;16:1397–402.

    PubMed  PubMed Central  Google Scholar 

  115. Villarroel MC, Rajeshkumar NV, Garrido-Laguna I, Jesus-Acosta A, Jones S, Maitra A, et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther. 2011;10:3–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Infante MH, Sato N, Tonascia J, Klein AP, Riall TS, Yeo CJ, et al. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol. 2007;25:319–25.

    PubMed  Google Scholar 

  117. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Google Scholar 

  118. In: WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC; 2010. Vol. p.

    Google Scholar 

  119. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333:425.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36:173–84.

    PubMed  PubMed Central  Google Scholar 

  122. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363:1801–11.

    PubMed  CAS  Google Scholar 

  123. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.

    PubMed  CAS  Google Scholar 

  124. Abraham SC, Klimstra DS, Wilentz RE, Wu TT, Cameron JL, Yeo CJ, et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol. 2002;160:1361–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108:21188–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3:92ra66.

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Kanda M, Knight S, Topazian MD, Syngal S, Farrell J, Lee JH, et al. Mutant GNAS detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut. 2012;62:1024–33.

    PubMed  PubMed Central  Google Scholar 

  128. Sawada T, Yamamoto E, Suzuki H, Nojima M, Maruyama R, Shioi Y, et al. Association between genomic alterations and metastatic behavior of colorectal cancer identified by array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2013;52:140–9.

    PubMed  CAS  Google Scholar 

  129. Bohanes P, LaBonte MJ, Winder T, Lenz HJ. Predictive molecular classifiers in colorectal cancer. Semin Oncol. 2011;38:576–87.

    PubMed  CAS  Google Scholar 

  130. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Harris TJ, Peifer M. Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol. 2005;15:234–7.

    PubMed  CAS  Google Scholar 

  132. Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342:1234850.

    PubMed  Google Scholar 

Download references

Conflict of Interest

Ralph Hruban receives royalty payments from Myriad Genetics for the PALB2 invention.

Andreas Jung is member of Advisory Boards for AMGEN and Merck Serono and received honoraria for presentations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

5-FU

5-Fluorouracil

CIMP

CpG island methylator phenotype

CIMP-H

High-grade CIMP

CIMP-L

Low-grade CIMP

ECM

Extracellular matrix

EGFR

Epidermal growth factor

EMT

Epithelio-mesenchymal transition

GEM

Genetically engineered mouse

Her2

EGFR 2

MLH1

MUT L homologue 1

MSH

MUT S homologue

TERT

Telomerase RT component

INK4a

Inhibitor of kinase 4

LEF-1

Lymphocyte enhancing factor-1

MGMT

O6-Methyl guanosine methyl transferase

miRNA

micro RNA

MMP

Matrix metalloproteinase 7

MSI-H

High-grade microsatellite instability

MT-MMP

Membrane-type MMP

ncRNA

Noncoding RNA

OIS

Oncogene-induced senescence

PMS

Postmitotic segregation

POL E

DNA polymerase ε

TCF

T-cell factor

uPA

Urokinase plasminogen activator

uPAR

uPA receptor

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jung, A., Hruban, R. (2015). Genomic Applications in Colorectal and Pancreatic Tumors. In: Netto, G., Schrijver, I. (eds) Genomic Applications in Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0727-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0727-4_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0726-7

  • Online ISBN: 978-1-4939-0727-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics