Skip to main content

The ERabp Gene Family: Structural and Physiological Analyses

  • Chapter
Biology of Adventitious Root Formation

Part of the book series: Basic Life Sciences ((BLSC,volume 62))

Abstract

Auxins are a group of phytohormones that influence a wide range of growth and developmental responses in plants. Effects induced by auxins include a stimulation of cell enlargement and stem growth, cell division, vascular tissue differentiation, initiation of roots on stem cuttings, the development of branch roots and the differentiation of roots in tissue culture (Davies, 1987). Although auxin can inhibit the growth of a primary root at rather low concentrations, probably due to the induction of ethylene production, lateral branch roots and adventitious roots are stimulated by high auxin levels, an effect that has been very useful in horticultural practice for plant propagation by cuttings (see chapter by Blakesley, by Haissig and Davis, and by Howard in this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Ghislain, M., and Guern, J., 1989, Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts, Proc. Natl. Acad. Sci. USA 86:86.

    Article  Google Scholar 

  • Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Maurel, C., Palme, K., Schell, J., and Guern, J., 1991, Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant J. 1:1.

    Article  Google Scholar 

  • Booth, C., and Koch, G.L.E., 1989, Perturbation of cellular calcium induces secretion of luminal ER proteins, Cell 59:59.

    Article  Google Scholar 

  • Campos, N., Feldwisch, J., Zettl, R., Boland, W., Schell, J., and Palme, K., 1991, Identification of auxin binding proteins using an improved assay for photoaffinity labeling with 5-N3-[7-3H]-indole-3-acetic acid, Technique 3:3.

    Google Scholar 

  • Campos, N., Bako, L., Feldwisch, J., Schell, J., and Palme, K., 1992, A protein from maize labeled with azido-IAA has novel ß-glucosidase activity, Plant J. 2:2.

    Article  Google Scholar 

  • Davies, P.J., 1987, “Plant Hormones and their Role in Plant Growth and Development,” Martinus Nijhoff Pubs., Dordrecht.

    Book  Google Scholar 

  • Dohrmann, U., Hertel, R., and Kowalik, W., 1978, Properties of auxin binding sites in different subcellular fractions from maize coleoptiles, Planta 140:140.

    Article  Google Scholar 

  • Feldwisch, J., Zettl, R., Hesse, F., Schell, J., and Palme, K., 1992, An auxin binding protein is localised to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23 kDa polypeptide, Proc. Natl. Acad. Sci. USA 89:89.

    Article  Google Scholar 

  • Felle, H., Brummer, B., Berti, A., and Parish, R.W., 1986, Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells, Proc. Natl. Acad. Sci. USA. 83:83.

    Article  Google Scholar 

  • Felle, H., Peters, W., and Palme, K., 1991, The electrical response of maize to auxins, Biochim. Biophys. Acta 1064:1064.

    Google Scholar 

  • Hedrich, R., and Schroeder, J.I., 1989, The physiology of ion channels and electrogenic pumps in higher plants, Annu. Rev. Plant Physiol. 40:40.

    Google Scholar 

  • Hertel, R., Thomson, K.S., and Russo, V.E.A., 1972, In vitro auxin binding to paniculate cell fractions from corn coleoptiles, Planta 107:107.

    Article  Google Scholar 

  • Hesse, T., Feldwisch, J., Balshüsemann, D., Bauw, G., Puype, M., Vandekerckhove, J., Löbler, M., Klämbt, D., Schell, J., and Palme, K., 1989, Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin, EMBO J. 8:8.

    Google Scholar 

  • Hicks, G.R., Rayle, D.L., Jones, A.M., and Lomax, T.L., 1989a, Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin, Proc. Natl. Acad. Sci. USA 86:4948.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, G.R., Rayle, D.L., and Lomax, T.L., 1989b, The diageotropica mutant of tomato lacks high specific activity auxin binding sites, Science 245:52.

    Article  PubMed  CAS  Google Scholar 

  • Inohara, N., Shimomura, S., Fukui, T., and Futai, M., 1989, Auxin-binding protein located in the endoplasmic reticulum of maize shoots: Molecular cloning and complete structure, Proc. Natl. Acad. Sci. USA 86:3564–3568.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A.M., Melhado, L.L., Ho, T.-H., and Leonhard, N.J., 1984, Azido auxins, Quantitative binding data in maize, Plant Physiol. 74:74.

    Article  Google Scholar 

  • Jones, A. M., and Prasad, P. V., 1992, Auxin binding proteins and their possible roles in auxin-mediated plant cell growth, BioEssays 14:14.

    Google Scholar 

  • Lazarus, C.M., Napier, R.M., Yu, L.-X., Lynas, C., and Venis, M.A., 1991, Auxin binding protein antibodies and genes, in “Molecular Biology of Plant Development,” G.I. Jenkins, and W. Schuch., eds., Company of Biologists Ltd., Cambridge.

    Google Scholar 

  • Macdonald, H., Jones, A.M., and King, P., 1991, Photoaffinity labeling of soluble auxin-binding proteins, J. Biol. Chem. 266:266.

    Google Scholar 

  • Melhado, L.L., Jones, A.M., Leonard, N.J., and Vanderhoef, L., 1981, Azido auxins: synthesis and biological activity of fluorescent photoaffinity labeling agents, Plant Physiol. 68:68.

    Article  Google Scholar 

  • Napier, R., and Venis, M. (1990) Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein, Planta 182:313–318.

    Article  CAS  Google Scholar 

  • Palme, K., Feldwisch, J., Hesse, T., Bauw, G., Puype, M., Vandekerckhove, J., and Schell, J., 1990, Auxin binding proteins from maize coleoptiles: Purification and molecular properties, in “Hormone Perception and Signal Transduction in Animais and Plants,” vol. XLIV, J.A. Roberts, C. Kirk, and M. Venis, eds., The Company of Biologists Ltd., Cambridge.

    Google Scholar 

  • Palme, K., Hesse, T., Moore, I., Campos, N., Feldwisch, J., Garbers, C., Hesse, F., and Schell, J., 1991, Hormonal modulation of plant growth: The role of auxin perception, Mechanisms of Development 33:33.

    Article  Google Scholar 

  • Palme, K., Hesse, T., Campos, N., Garbers, C., Yanofsky, M.F., and Schell, J., 1992, Molecular analysis of an auxin binding protein gene located on chromosome 4 of arabidopsis, Plant Cell 4:4.

    Google Scholar 

  • Pelham, H.R.B., 1990, The retention signal for the soluble proteins of the endoplasmic reticulum, Trends Biochem. Sci. 15:15.

    Article  Google Scholar 

  • Peters, W.S., and Felle, H., 1991, Control of apoplast pH in corn coleoptile segments, II. The effect of various auxins and auxin analogues, J. Plant Physiol. 137:137.

    Google Scholar 

  • Prasad, P.V., and Jones, A.M., 1992, Putative receptor for the plant growth hormone auxin identified and characterized by anti-idiotypic antibodies, Proc. Natl. Acad. Sci. USA 88:88.

    Google Scholar 

  • Ray, P.M., Dohrmann, U., and Hertel, R., 1977, Specificity of auxin-binding sites on maize coleoptile membranes as possible receptor sites of auxin action, Plant Physiol. 60:60.

    Google Scholar 

  • Rück, A., Palme, K., Venis, M.A., Napier, R., and Felle, H.H., 1993, Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma current in Zea mays protoplasts, Plant J. (in press).

    Google Scholar 

  • Shimomura, S., Sotobayashi, T., Futai, M., and Fukui, T., 1986, Purification and properties of an auxin-binding protein from maize shoot membranes, J. Biochem. 99:99.

    Google Scholar 

  • Schwob, E., Choi, S.-Y., Simmons, C., Migliaccio, F., Ilag, L., Hesse, T., Palme, K., and Söll, D., 1993, Molecular analysis of three maize 22 kDa auxin binding protein genes — transient promoter expression and regulatory regions, Plant J. (in press).

    Google Scholar 

  • Tillmann, U., Viola, G., Kayser, B., Siemeister, G., Hesse, H., Palme, K., Löbler, M., and Klämbt, D., 1989, cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): Isolation and characterization by immunological methods, EMBO J. 8:8.

    Google Scholar 

  • Venis, M.A., 1977, Solubilisation and partial purification of auxin-binding sites of corn membranes, Nature 266:266.

    Article  Google Scholar 

  • Venis, M., 1985, “Hormone Binding Sites in Plants,” Longman, New York.

    Google Scholar 

  • Venis, M., 1987, Can auxin receptors be purified by affinity chromatography? in “Plant Hormone Receptors,” D. Klämbt, ed., NATO ASI Series H, vol. 10., Springer-Verlag, Berlin.

    Google Scholar 

  • Venis, M.A., Napier, R.M., Barbier-Brygoo, H., Maurel, C., Perrot-Rechenmann, C., and Guem, J., 1992, Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity, Proc. Natl. Acad. Sci. USA 89:89.

    Article  Google Scholar 

  • Yu, L.-X., and Lazarus, CM., 1991, Structure and sequence of an auxin-binding protein gene from maize (Zea mays L.), Plant. Mol. Biol. 16:16.

    Article  Google Scholar 

  • Zettl, R., Campos, N., Boland, W., Schell, J., and Palme, K., 1991, 5’-azido-[3,6-3H2]-naphthylphtalamic acid, a photoactivatable probe for auxin efflux carrier proteins. Technique 3:3.

    Google Scholar 

  • Zettl, R., Feldwisch, J., Boland, W., Schell, J., and Palme, K., 1992, Azido-[3,6-3H2]-N-l-naphthylphtalamic acid, a novel photo-activatable probe for auxin efflux carrier proteins from higher plants: Identification of a 23 kDa protein from maize coleoptile plasma membranes, Proc. Natl. Acad. Sci.USA 89:89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palme, K., Hesse, T., Garbers, C., Simmons, C., Söll, D. (1994). The ERabp Gene Family: Structural and Physiological Analyses. In: Davis, T.D., Haissig, B.E. (eds) Biology of Adventitious Root Formation. Basic Life Sciences, vol 62. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9492-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9492-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9494-6

  • Online ISBN: 978-1-4757-9492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics