Skip to main content

Constructions of Optimal Linear Codes

  • Chapter
Numbers, Information and Complexity

Abstract

The goal of this paper is to present an overview on known constructions of length-optimal linear codes. First we discuss the interrelation between various definitions of optimality in terms of the basic parameters of a linear code: length, dimension and minimum distance.. Then we give some general constructions of Griesmer codes based on the anticode technique. Constructions using the correspondences between codes and projective multisets are also considered. A survey on quasi-cyclic and quasi-twisted optimal codes is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L.D. Baumert, R.J. McEliece, “A note on the Griesmer bound” IEEE Trans. Inform. Theory 19, 2, 1973, 134–135.

    Article  MathSciNet  MATH  Google Scholar 

  2. B.I. Belov, “A conjecture on the Griesmer boundary”, Optimization methods and their applications All- Union Summer Sem., Khakusy, Lake Baikal, 1972 Russian, 182. Sibirsk. Energet. Inst. Sibirsk. Otdel. Akad. Nauk SSSR, Irkutsk, 1974, 100–106.

    Google Scholar 

  3. E.R. Berlekamp, Algebraic coding theory,McGraw-Hill Book Co., New York - Toronto, Ont. - London, 1968, xiv+466.

    Google Scholar 

  4. I.G. Boukliev, “New bounds for the minimum length of quaternary linear codes of dimension five”, Discrete Math. 169, no. 1–3, 1997, 185–192.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.E. Brouwer, T. Verhoeff, “An updated table of minimum-distance bounds for binary linear codes”, IEEE Trans. Inform. Theory 39, no. 2, 1993, 662–676.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.E. Brouwer, M. van Eupen, “The correspondence between projective codes and 2-weight codes”, Des. Codes Cryptogr. 11, no. 3, 1997, 262–266.

    Article  Google Scholar 

  7. A.E. Brouwer, “Bounds on the size of linear codes”, Handbook of Coding Theory,eds. V. S. Pless and W. C. Huffman, Elsevier, Amsterdam etc., 1998, ISBN: 0–444–50088–X.

    Google Scholar 

  8. A.R. Calderbank, W.M. Kantor, “The geometry of two-weight codes”, Bull. London Math. Soc. 18, 1986, 97–122.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.L. Chen, W.W. Peterson, E.J. Jr. Weldon, “Some results on quasi-cyclic codes”, Information and Control 15, 1969, 407–423.

    Article  MathSciNet  MATH  Google Scholar 

  10. R.N. Daskalov, “Ten good quasi-cyclic 10-dimensional quaternary linear codes”, Proc. Int. Workshop on Optimal Codes and Related Topics, Sozopol, Bulgaria, May 26–June 1, 1995, 45–49.

    Google Scholar 

  11. R.N. Daskalov, “Some good rate in–11pm quaternary quasi-cyclic codes of dimension ten”, Mathematics and Education in Mathematics, Sofia, 1996, 104–108.

    Google Scholar 

  12. R.N. Daskalov, T.A. Gulliver, “New good quasi-cyclic ternary and quaternary linear codes”, IEEE Trans. Inform. Theory 43, no. 5, 1997, 1647–1650.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Delsarte, “Weights of linear codes and strongly regular normed spaces”, Discrete Math. 3, 1972, 47–64.

    Article  MathSciNet  MATH  Google Scholar 

  14. S.M. Dodunekov, “The minimum block length of a linear q-ary code with given dimension and code distance”, Problemy Peredachi Informatsii 20, no. 4, 1984, 11–22.

    MathSciNet  Google Scholar 

  15. S.M. Dodunekov, “ A note on the Griesmer bound”, C. R. Acad. Bulgare Sci. 37, no. 9, 1984, 1177–1178.

    MathSciNet  MATH  Google Scholar 

  16. S.M. Dodunekov, “, N.L. Manev, An improvement of the Griesmer bound for some small minimum distances”, Discrete Appl. Math. 12, no. 2, 1985, 103–114.

    Article  MathSciNet  MATH  Google Scholar 

  17. S.M. Dodunekov, Optimal linear codes, Doctor Thesis, Sofia, 1985.

    Google Scholar 

  18. S.M. Dodunekov, J. Simonis, “Codes and projective multisets”, Electron. J. Combin. 5, 1998, no. 1, Research Paper 37, 23 pp. electronic.

    Google Scholar 

  19. P.G. Farrell, “Linear binary anticodes”, Electron. Lett. 6, 1970, 419–421.

    Article  MATH  Google Scholar 

  20. P.P. Greenough, R. Hill, “Optimal ternary quasi-cyclic codes”, Des. Codes Cryptogr. 2, no. 1, 1992, 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Griesmer, “A bound for error-correcting codes”, IBM J. Res. Develop. 4, 1960, 532–542.

    Article  MathSciNet  MATH  Google Scholar 

  22. T.A. Gulliver, Construction of quasi-cyclic codes, PhD Thesis, Univ. of Victoria, Canada, 1989.

    Google Scholar 

  23. T.A. Gulliver, V.K. Bhargava, “Some best rate 1/p and rate p - 1/p systematic quasi-cyclic codes”, IEEE Trans. Inform. Theory 37, no. 3, 1991, part 1, 552–555.

    Google Scholar 

  24. T.A. Gulliver, V.K. Bhargava, “Nine good rate in - 1/pm quasi-cyclic codes”, IEEE Trans. Inform. Theory 38, 1992, no. 4, 1366–1369.

    Article  MathSciNet  MATH  Google Scholar 

  25. T.A. Gulliver, V.K. Bhargava, “Some best rate 1/p and rate p-1/p systematic quasi-cyclic godes over GF3 and GF4, IEEE Trans. Inform. Theory 38, 1992, no. 4, 1369–1374.

    Article  MathSciNet  MATH  Google Scholar 

  26. T.A. Gulliver, V.K. Bhargava, New good rate m - limp ternary and quaternary quasi-cyclic codes, Technical report SCE-93–18, Carlton University, 1993.

    Google Scholar 

  27. T.A. Gulliver, V.K. Bhargava, “Two new rate 2/p binary quasi-cyclic codes”, IEEE Trans. Inform. Theory 40, no. 5, 1994, 1667–1668.

    Article  MathSciNet  MATH  Google Scholar 

  28. T.A. Gulliver, “New optimal ternary linear codes of dimension 6”, Ars Combin. 40, 1995, 97–108.

    MathSciNet  MATH  Google Scholar 

  29. T.A. Gulliver, V.K. Bhargava, “An updated table of rate 1/p binary quasi-cyclic codes”, Appl. Math. Lett. 8, no. 5, 1995, 81–86.

    Article  MathSciNet  MATH  Google Scholar 

  30. T.A. Gulliver, Two new optimal ternary two-weight codes and strongly regular graphs“, Discrete Math. 149, no. 1–3, 1996, 83–92.

    Article  MathSciNet  MATH  Google Scholar 

  31. T.A. Gulliver, V.K. Bhargava, “New good rate m - 1/pm ternary and quaternary quasi-cyclic codes”, Des. Codes Cryptogr. 7, 1996, rro. 3, 223233.

    Google Scholar 

  32. T.A. Gulliver, V.K. Bhargava, “Some best rate 1/p quasi-cyclic codes over GF5, Information theory and applications II. Proceedings of the fourth Canadian Workshop Lac Delaye, Québec, Canada, 1995, 28–40, Lecture Notes in Comput. Sci., 1133, Springer, Berlin - New York, 1996.

    Google Scholar 

  33. T.A. Gulliver, V.K. Bhargava, “Improvements to the bounds on optimal binary linear codes of dimensions 11 and 12”, Ars Combin. 44, 1996, 173181.

    Google Scholar 

  34. T.A. Gulliver, V.K. Bhargava, “New optimal binary linear codes of dimensions 9 and 10”, IEEE Trans. Inform. Theory 43, no. 1, 1997, 314–316.

    Article  MathSciNet  MATH  Google Scholar 

  35. T.A. Gulliver, P.R.J. Ostergârd, “Improved bounds for ternary linear codes of dimension 7, IEEE Trans. Inform. Theory 43, 1997, 1377–1381.

    Article  MathSciNet  MATH  Google Scholar 

  36. T.A. Gulliver, P.R.J. Ostergârd, “Improved bounds for quaternary linear codes of dimension 6”, Appl. Algebra Engrg. Comm. Comput. 9, no. 2, 1998, 153–159.

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Hamada, F. Tamari, “Construction of optimal codes and optimal fractional factorial designs using linear programming”, Combinatorial mathematics, optimal designs and their applications Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978. Ann. Discrete Math. 6, 1980, 175–188.

    MathSciNet  MATH  Google Scholar 

  38. N. Hamada, M. Deza, “A survey of recent works with respect to a characterization of an n, k, d, q-code meeting the Griesmer bound using a min-hyper in a finite projective geometry”, Discrete Math. 77, rio. 1–1, 1989, 75–87.

    Article  MathSciNet  Google Scholar 

  39. N. Hamada, T. Helleseth, “A characterization of some linear codes over GF4 meeting the Griesmer bound”, Math. Japon. 37, no. 2, 1992, 231–242.

    MathSciNet  MATH  Google Scholar 

  40. N. Hamada, T. Helleseth, O. Ytrehus, “A new class of nonbinary codes meeting the Griesmer bound”, Discrete Appl. Math. 47, no. 3, 1993, 219226.

    Google Scholar 

  41. N. Hamada, “A survey of recent work on characterization of minihypers in PGt, q and nonbinary linear codes meeting the Griesmer bound”, J. Combin. Inform. System Sci. 18, no. 3–4, 1993, 161–191.

    MathSciNet  MATH  Google Scholar 

  42. T. Helleseth, “A characterization of codes meeting the Griesmer bound”, Inform. and Control 50, no. 2, 1981, 128–159.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Helleseth, H.C.A. van Tilborg, “A new class of codes meeting the Griesmer bound”, IEEE Trans. Inform. Theory 27, no. 5, 1981, 548–555.

    Article  MathSciNet  MATH  Google Scholar 

  44. T. Helleseth, “New constructions of codes meeting the Griesmer bound”, IEEE Trans. Inform. Theory 29, no. 3, 1983, 434–439.

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Helleseth, “Projective codes meeting the Griesmer bound”, Discrete Math., 106 /107, 1992, 265–271.

    Article  MathSciNet  Google Scholar 

  46. R. Hill, “Caps and codes”, Discrete Math. 22, no. 2, 1978, 111–137.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Hill, “Optimal linear codes”, Cryptography and coding, II Cirencester, 1989, 75–104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992.

    Google Scholar 

  48. R. Hill, P.P. Greenough, “Optimal quasi-twisted codes”, Proc. Third Int. Workshop on Algebraic and Combinatorial Coding Theory, Voneshta Voda, Bulgaria, June 22–28, 1992, 92–97.

    Google Scholar 

  49. R. Hill, E. Kolev, “A survey of recent results on optimal linear codes”, to appear in Comb. Designs and their Appl..

    Google Scholar 

  50. J. W.P. Hirschfeld, L. Storme, “The packing problem in statistics, coding theory and finite projective spaces”, J. Stat. Planning and Inference, 72, 1998, 355–380.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. B. Jaffe, “Binary linear codes: new results on nonexistence”, Draft version accessible through the author’s web page http://www.math.unl.edu/ djaffe,11/10/1997 Version 0.5. Dept. of Math. and Statistics, University of Nebraska, Lincoln.

    Google Scholar 

  52. D. B. Jaffe, J. Simonis, “New binary linear codes which are dual transforms of good codes”,to be published to IEEE Trans. Inform. Theory.

    Google Scholar 

  53. T.A. Kasami, “Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2”, IEEE Trans. Inform. Theory 20, 1974, 679.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Krawtchouk, “Sur une généralisation des polynomes d’Hermite”, Comptes Rendus 189, 1929, 620–622.

    MATH  Google Scholar 

  55. G. Lachaud, M.A. Tsfasman, J. Justesen, V.K. Wei, “Special Issue on Algebraic Geometry Codes”, IEEE Trans. Inform. Theory 41, 1975.

    Google Scholar 

  56. I.N. Landgev, “Linear codes over finite fields and finite projective geometries” to appear in Discrete Math.

    Google Scholar 

  57. V.N. Logachev, “An improvement of the Griesmer bound in the case of small code distances”, Optimization methods and their applications All-Union Summer Sem., Khakusy, Lake Baikal, 1972 Russian, 182, Sibirsk. Energet. Inst. Sibirsk. Otdel. Akad. Nauk SSSR, Irkutsk, 1974, 107–111.

    Google Scholar 

  58. V.N. Logachev, “A construction of a class of codes meeting the VarshamovGriesmer bound”, Russian Modelling and optimization in large energy systems, 116–120, Sib. Otd. AN SSSR, Irkutsk, 1975, 116–120.

    Google Scholar 

  59. V.N. Logachev, “A construction of a class of optimal anticodes”, Proc. Eighth All-Union Conference on Coding Theory and Inf. Transmission. Abstracts, part 2,1981, Moscow - Kuibyshev,95–97.

    Google Scholar 

  60. V.N. Logachev, “New sufficient conditions for the existence of codes attaining the Varshamov-Griesmer bound”, Problemy Peredachi Informatsii 22, no. 2, 1986, 3–26.

    MathSciNet  Google Scholar 

  61. V.N. Logachev, “Characterization and existence conditions for codes that meet the Varshamov-Griesmer bound”, Problems Inform. Transmission 24, no. 3, 1988, 24–41, translated from Problemy Peredachi Informatsii 24, no. 3, 1988, 189–204 Russian.

    Google Scholar 

  62. F.J. MacWilliams, N.J.A. Sloane, The theory of error–correcting codes,2nd reprint, North–Holland Mathematical Library, Vol. 16, North–Holland Publishing Co., Amsterdam – New York – Oxford, 1983, xx+762 pp. ISBN: 0–444–85009–0 and 0–444–85010–4.

    Google Scholar 

  63. W.W. Peterson, E.J. Jr. Weldon, Error-correcting codes,Second edition. The M.I.T. Press, Cambridge, Mass. - London, 1972. xi+560 pp.

    Google Scholar 

  64. V.S. Pless, W.C. Huffman, Handbook of Coding Theory,Elsevier, Amsterdam, 1998, ISBN: 0–444–50088–X.

    Google Scholar 

  65. G.E. Seguin, G. Drolet, The theory of 1-generator quasicyclic codes, Preprint, Royal Military College of Canada, Kingston, ON, June 1990

    Google Scholar 

  66. F. Slepian, “A class of binary signaling alphabets”, Bell System Tech. J. 35, 1956, 203–234.

    MathSciNet  Google Scholar 

  67. G. Solomon, J.J. Stuffier, “Algebraically punctured cyclic codes”, Inform. and Control 8, 1965, 170–179.

    Article  MATH  Google Scholar 

  68. F. Tamari, “A construction of some [n, k, d, q]-codes meeting the Griesmer bound”, Discrete Math. 116, 1993, 269–287.

    Article  MathSciNet  MATH  Google Scholar 

  69. R.L. Townsend, E.J. Jr. Weldon, “Self-orthogonal quasi-cyclic codes”, IEEE Trans. Inform. Theory 13, no. 2, 1967, 183–195.

    Article  MATH  Google Scholar 

  70. H.C.A. van Tilborg, “On quasi-cyclic codes with rate 1/m”, IEEE Trans. Inform. Theory 24, no. 5, 1978, 628–630.

    Article  MathSciNet  MATH  Google Scholar 

  71. H.C.A. van Tilborg, “On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound”, Inform. and Control 44, no. 1, 1980, 16–35.

    Article  MathSciNet  MATH  Google Scholar 

  72. R.R. Varshamov, Problems of the general theory of linear coding, Extended abstract of a PhD Thesis, Moscow State University, 1959.

    Google Scholar 

  73. S. Weijs, A computer search for quasi-cyclic codes, Master’s thesis, Dept. Math. and Comp. Sci., Eindhoven Univ. Technol., Eindhoven, The Netherlands, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dodunekov, S., Simonis, J. (2000). Constructions of Optimal Linear Codes. In: Althöfer, I., et al. Numbers, Information and Complexity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6048-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6048-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4967-7

  • Online ISBN: 978-1-4757-6048-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics