Skip to main content

A computational theory of human stereo vision

  • Chapter
From the Retina to the Neocortex

Abstract

An algorithm is proposed for solving the stereoscopic matching problem. The algorithm consists of five steps: (1) Each image is filtered at different orientations with bar masks of four sizes that increase with eccentricity; the equivalent filters are one or two octaves wide. (2) Zero-crossings in the filtered images, which roughly correspond to edges, are localized. Positions of the ends of lines and edges are also found. (3) For each mask orientation and size, matching takes place between pairs of zero-crossings or terminations of the same sign in the two images, for a range of disparities up to about the width of the mask’s central region. (4) Wide masks can control vergence movements, thus causing small masks to come into correspondence. (5) When a correspondence is achieved, it is stored in a dynamic buffer, called the 2½-D sketch.

A preliminary and lengthier version of this theory is available from the M.I.T. A.I. Laboratory as Memo 451 (1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, H. B., Blakemore, C. & Pettigrew, J. D. 1967 The neural mechanism of binocular depth discrimination. J. Physiol., Load. 193 327–342.

    Google Scholar 

  • Bishop, P. Q., Henry, G. H. & Smith, C. J. 1971 Binocular interaction fields of single units in the cat striate cortex. J. Physiol., Lond. 216 39–68.

    Google Scholar 

  • Blakemore, C. & Campbell, F. W. 1969 On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol., Lond. 203 237–260.

    Google Scholar 

  • Blomfield, S. 1973 Implicit features and stereoscopy. Nature, new Biol. 245 256.

    Article  Google Scholar 

  • Campbell, F. W. & Robson, J. 1968 Application of Fourier analysis to the visibility of gratings. J. Physiol., Lond. 197 551–566.

    Google Scholar 

  • Clarke, P. G. H., Donaldson, I. M. L. & Whitteridge, D. 1976 Binocular visual mechanisms in cortical areas I and II of the sheep. J. Physiol., Lond. 256 509–526.

    Google Scholar 

  • Cowan, J. D. 1977 Some remarks on channel bandwidths for visual contrast detection. Neurosci. Res. Progr. Bull. 15 492–517.

    Google Scholar 

  • Dev, P. 1975 Perception of depth surfaces in random-dot stereograms: a neural model. Int. J. Man-Machine Stud. 7, 511–528.

    Article  Google Scholar 

  • Felton, T. B., Richards, W. & Smith, R. A. Jr. 1972 Disparity processing of spatial frequencies in man. J. Physiol., Lond. 225, 349–362.

    Google Scholar 

  • Fender, D. & Julesz, B. 1967 Extension of Panum’s fusional area in binocularly stabilized vision. J. opt. Soc. Am. 57, 819–830.

    Article  Google Scholar 

  • Foley, J. M., Applebaum, T. H. & Richards, W. A. 1975 Stereopsis with large disparities: discrimination and depth magnitude. Vision Res. 15, 417–422.

    Article  Google Scholar 

  • Frisby, J. P. & Clatworthy, J. L. 1975 Learning to see complex random-dot stereograms. Perception 4, 173–178.

    Article  Google Scholar 

  • Frisby, J. P. & Mayhew, J. E. W. 1979 Spatial frequency selective masking and stereopsis. (In preparation.)

    Google Scholar 

  • Georgeson, M. A. & Sullivan, G. D. 1975 Contrast constancy: deblurring in human vision by spatial frequency channels. J. Physiol., Lond. 252, 627–656.

    Google Scholar 

  • Grimson, W. E. L. & Marr, D. 1979 A computer implementation of a theory of human stereo vision. (In preparation.)

    Google Scholar 

  • von der Heydt, R., Adorjani, Cs., Hanny, P. & Baumgartner, G. 1978 Disparity sensitivity and receptive field incongruity of units in the cat striate cortex. Exp. Brain Res. 31, 523–545.

    Article  Google Scholar 

  • Hines, M. 1976 Line spread function variation near the fovea. Vision Res. 16, 567–572.

    Article  Google Scholar 

  • Hirai, Y. & Fukushima, K. 1976 An inference upon the neural network finding binocular correspondence. Trans. IECE J59-D, 133–140.

    Google Scholar 

  • Hubel, D. H. & Wieset, T. N. 1974 Sequence regularity and geometry of orientation columns in monkey striate cortex. J. comp. Neurol. 158, 267–294.

    Article  Google Scholar 

  • Jones, R. 1972 Psychophysical and oculomotor responses of manual and stereoanomalous observers to disparate retinal stimulation. Doctoral dissertation, Ohio State University. Dissertation Abstract N. 72–20970.

    Google Scholar 

  • Julesz, B. 1960 Binocular depth perception of computer-generated patterns. Bell System Tech. J. 39 1125–1162.

    Google Scholar 

  • Julesz, B. 1963 Towards the automation of binocular depth perception (automap-1). Proceedings of the IFIPS Congres, Munich 1962 (ed. C. M. Popplewell). Amsterdam: North Holland.

    Google Scholar 

  • Julesz, B. 1971 Foundations of cyclopean perception. The University of Chicago Press.

    Google Scholar 

  • Julesz, B. & Chang, J. J. 1976 Interaction between pools of binocular disparity detectors tuned to different disparities. Biol. Cybernetics 22 107–120.

    Article  Google Scholar 

  • Julesz, B. & Miller, J. E. 1975 Independent spatial-frequency-tuned channels in binocular fusion and rivalry. Perception 4, 125–143.

    Article  Google Scholar 

  • Kaufman, L. 1964 On the nature of binocular disparity. Am. J. Psychol. 77, 393–402.

    Article  Google Scholar 

  • Leadbetter, M. R. 1969 On the distributions of times between events in a stationary stream of events. J. R. statist. Soc. B 31, 295–302.

    Google Scholar 

  • Longuet-Higgins, M. S. 1962 The distribution of intervals between zeros of a stationary random function. Phil. Trans. R. Soc. Lond. A 254 557–599.

    Article  Google Scholar 

  • Marr, D. 1974 A note on the computation of binocular disparity in a symbolic, low-level visual processor. M.I.T. A.I. Lab. Memo 327.

    Google Scholar 

  • Marr, D. 1976 Early processing of visual information. Phil. Trans. R. Soc. Lond. B 275 483–524.

    Article  Google Scholar 

  • Marr, D. 1977 Representing visual information. AAAS 143rd Annual Meeting. Symposium on Some Mathematical Questions in Biology, February. Published in Lectures on mathematics in the life sciences 10 101–180 (1978) Also available as M.I.T. A.I. Lab. Memo 415.

    Google Scholar 

  • Marr, D. & Hildreth, E. 1979 Theory of edge detection. (In preparation.)

    Google Scholar 

  • Marr, D. & Nishihara, H. K. 1978 Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B 200, 269–294.

    Article  Google Scholar 

  • Marr, D., Palm, G. & Poggio, T. 1978 Analysis of a cooperative stereo algorithm. Biol. Cybernetics 28 223–229.

    Article  Google Scholar 

  • Marr, D. & Poggio, T. 1976 Cooperative computation of stereo disparity. Science, N.Y. 194, 283–287.

    Article  Google Scholar 

  • Marr, D. & Poggio, T. 1977a A theory of human stereo vision. M.I.T. A.I. Lab. Memo 451.

    Google Scholar 

  • Marr, D. & Poggio, T. 1977b Theory of human stereopsis. J. opt. Soc. Am. 67, 1400.

    Google Scholar 

  • Mayhew, J. E. W. & Frisby, J. P. 1976 Rivalrous texture stereograms. Nature, Lond. 264 53–56.

    Article  Google Scholar 

  • Mitchell, D. E. 1966 Retinal disparity and diplopia. Vision Res. 6, 441–451.

    Article  Google Scholar 

  • Nelson, J. I. 1975 Globality and stereoscopic fusion in binocular vision. J. theor. Biol. 49 1–88.

    Google Scholar 

  • Nelson, J. I., Kato, H. & Bishop, P. O. 1977 Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex. J. Neurophysiol. 40 260–283.

    Google Scholar 

  • Papoulis, A. 1968 Systems and transforms with applications in optics. New York: McGraw Hill.

    Google Scholar 

  • Pettigrew, J. D., Nikara, T. & Bishop, P. O. 1968 Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp. Brain Res. 6, 311–410.

    Google Scholar 

  • Poggio, G. F. & Fischer, B. 1978 Binocular interaction and depth sensitivity of striate and prestriate cortical neurons of the behaving rhesus monkey. J. Neurophysiol. 40 1392–1405.

    Google Scholar 

  • Rashbass, C. & Westheimer, G. 1961a Disjunctive eye movements. J. Physiol., Lond. 159 339–360.

    Google Scholar 

  • Rashbass, C. & Westheimer, G. 1961b Independence of conjunctive and disjunctive eye movements. J. Physiol., Lond. 159 361–364.

    Google Scholar 

  • Rice, S. O. 1945 Mathematical analysis of random noise. Bell Syst. Tech. J. 24 46–156.

    Google Scholar 

  • Richards, W. 1970 Stereopsis and steroblindness. Exp. Brain Res. 10 380–388.

    Article  Google Scholar 

  • Richards, W. 1971 Anomalous stereoscopic depth perception. J. opt. Soc. Am. 61 410–414.

    Article  Google Scholar 

  • Richards, W. 1975 Visual space perception. In Handbook of Perception, vol. 5, Seeing, ch. 10, pp. 351–386 (ed E. C. Carterette & M. D. Freidman). New York: Academic Press.

    Google Scholar 

  • Richards, W. A. 1977 Stereopsis with and without monocular cues. Vision Res. 17 967–969.

    Article  Google Scholar 

  • Richards, W. A. & Regan, D. 1973 A stereo field map with implications for disparity processing. Invest. Ophthal. 12 904–909.

    Google Scholar 

  • Riggs, L. A. & Niehl, E. W. 1960 Eye movements recorded during convergence and divergence. J. opt. Soc. Am. 50 913–920.

    Article  Google Scholar 

  • Saye, A. & Frisby, J. P. 1975 The role of monocularly conspicuous features in facilitating stereopsis from random-dot stereograms. Perception 4 159–171.

    Article  Google Scholar 

  • Schiller, P. H., Finlay, B. L. & Volman, S. F. 1977 Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. J. Neurophysiol. 39 1334–1351.

    Google Scholar 

  • Sperling, G. 1970 Binocular vision: a physical and a neural theory. Am. J. Psychol. 83 461–534.

    Article  Google Scholar 

  • Sugie, N. & Suwa, M. 1977 A scheme for binocular depth perception suggested by neuro-physiological evidence. Biol. Cybernetics 26 1–15.

    Article  Google Scholar 

  • Waltz, D. 1975 Understanding line drawings of scenes with shadows. In The psychology of computer vision (ed. P. H. Winston), pp. 19–91. New York: McGraw-Hill.

    Google Scholar 

  • Westheimer, G. & Mitchell, D. E. 1969 The sensory stimulus for disjunctive eye movements. Vision Res. 9, 749–755.

    Article  Google Scholar 

  • Williams, R. H. & Fender, D. H. 1977 The synchrony of binocular saccadic eye movements. Vision Res. 17, 303–306.

    Article  Google Scholar 

  • Wilson, H. R. 1978a Quantitative characterization of two types of line spread function near the fovea. Vision Res. 18, 971–981.

    Article  Google Scholar 

  • Wilson, H. R. 1978b Quantitative prediction of line spread function measurements: implications for channel bandwidths. Vision Res. 18, 493–496.

    Article  Google Scholar 

  • Wilson, H. R. & Bergen, J. R. 1979 A four mechanism model for spatial vision. Vision Res. (in the press).

    Google Scholar 

  • Wilson, H. R. & Giese, S. C. 1977 Threshold visibility of frequency gradient patterns. Vision Res. 17, 1177–1190.

    Article  Google Scholar 

  • Wilson, H. R., Phillips, G., Rentschler, I. & Hilz, R. 1979 Spatial probability summation and disinhibition in psychophysically measured line spread functions. Vision Res. (in the press).

    Google Scholar 

  • Ferster D (1981): A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. J Physiol 311: 623–655

    Google Scholar 

  • Grimson WEL (1981): From Images to Surfaces: A Computational Study of the Human Early Visual System. Cambridge, MA: MIT Press

    Google Scholar 

  • Grimson WEL (1985): Computational experiments with a feature based stereo algorithm. IEEE Trans Patt Anal Machine Intell PAMI 7: 17–34

    Article  Google Scholar 

  • Kidd AL, Mayhew JEW, Frisby JP (1979): Texture contours can facilitate stereopsis by initiating vergence eye movements. Nature 280: 829–832

    Article  Google Scholar 

  • Marr D, Palm G, Poggio T (1978): Analysis of a cooperative stereo algorithm. Biol Cybern 28: 223–239

    Article  Google Scholar 

  • Mayhew JEW, Frisby JP (1979): Convergent disparity discriminations in narrow-bandfiltered random-dot stereograms. Vision Res 19: 63–71

    Article  Google Scholar 

  • Mayhew JEW, Frisby JP (1981): Psychophysical and computational studies toward a theory of human stereopsis. Artif Intell 16: 349–385

    Article  Google Scholar 

  • Mowforth P, Mayhew JEW, Frisby JP (1981): Vergence eye movements made in response to spatial-frequency-filtered random-dot stereograms. Perception 10: 299–304

    Article  Google Scholar 

  • Poggio GF, Poggio T (1984): The analysis of stereopsis. Ann Rev Neurosci 7: 379–412

    Article  Google Scholar 

  • Schumer RA, Julesz B (1982): Disparity limits in bandpass random-grating stereograms. Invest Ophthal Visual Sci 22 (Suppl) 272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Boston

About this chapter

Cite this chapter

Marr, D., Poggio, T., Hildreth, E.C., Grimson, W.E.L. (1991). A computational theory of human stereo vision. In: Vaina, L. (eds) From the Retina to the Neocortex. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6775-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6775-8_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6777-2

  • Online ISBN: 978-1-4684-6775-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics