Skip to main content

The Corrosion of Metals by Molten Lithium

  • Chapter
Corrosion by Liquid Metals
  • 291 Accesses

Abstract

A number of metals were tested to find their corrosion resistance to contaminated molten lithium at 600°F (315°C) and 900°F (480°C). The effect of lithium on microstructure, tensile strength, and stress corrosion was found. The austenitic stainless steels, types 302, 303, 304, 316, 347 and the ferritic stainless steels, types 446, 430, 405 apparently were not impaired. Hardenable stainless steels were corroded when hardened but not when annealed. Alloy steels showed increased resistance when tempered at 1100°F for 24 hours. Titanium, molybdenum, tungsten, and chromium showed no evidence of attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Osberg, H., “Lithium, Theoretical Studies and Practical Application” New York, The Electro. chemical Society, Inc. 1935

    Google Scholar 

  2. DeMastry, J.A. and Griesenauer, N.M. “Refractory Metals In Lithium At Elevated Temperatures” In AEC AEC-NASA Liquid Metals Inform. Meeting 23 Apr. 1965 p. 130–136

    Google Scholar 

  3. DeMastry, J.A. “Corrosion Studies of Tungsten Molybdenum and Rhenium in Lithium” Nuci Appl. v. 3 no 2, Feb 1967, p 127–134

    Google Scholar 

  4. Distefano, J.R. and Hoffman, E.F., “Relation Between Oxygen Distribution and Corrosion In Some Refractory Metal-Lithium Systems” Paper from “Corrosion of Reactor Materials”, v. 2, International Atomic Energy Agency, Vienna, June 1962, p 431–449

    Google Scholar 

  5. Weeks, J.R., and Klamut, C.J. “Liquid Metal Corrosion Mechanisms” Paper from “Corrosion of Reactor Materials”, v. 1, International Atomic Energy Agency, Vienna, June 1962, p 105–129

    Google Scholar 

  6. Romano, A. J,, Fleitman A.H. and Klamut, C. J. “Evaluation of Li, Na, K, Rb,and Cs Boiling and Condensing in Nb-17. Zr Capsules” Nucl Appl. v. 3, no 2, Feb. 1967 p 110–116

    Google Scholar 

  7. Willhelm, Clyde “Preventing Corrosion By Liquid Metals”, Materials in Design Engineering, v 58, no 6, Nov. 1968, p 97–99

    Google Scholar 

  8. Hoffman, E.E. and Manly, W.D. “Corrosion Resistance of Metals and Alloys to Sodium and Lithium” Paper “Symposium on Handling and Uses of the Alkali Metals” American Chemical Society p. 82–91

    Google Scholar 

  9. DiStefano, J.R. and Hoffman, E.E. “Corrosion Mechanisms In Refractory Metal-Alkali Metal Systems” Contract W-7405 eng 26 (Ornl-3424) Sept 16,1963 54 p 102 refs Oak Ridge Natl Lab., Tenn.

    Google Scholar 

  10. Cramer, M.J. Stetson, A.R. (Solar Aircraft Co.) and Westcoat G.J. “Corrosion Rates of Refractory Metals Exposed To Nozzle Coolants” (final report, Aug. 2, 1961- Jan 2, 1962) April 1, 1962 61 p 2 refs. Aerojet-Gen’l Corp. Solid Rocket Plant, Sacramento, Calif.

    Google Scholar 

  11. Sessions, C., “Corrosion of Advanced Refractory Alloys in Lithium,” Proceedings of the AEC-NASA Liquid Metals Information Meeting pp. 143–148, AEC Report Conf-650411, April 1965.

    Google Scholar 

  12. Chick, Helen J., “Bibliography On Corrosion By Liquid Metals” (1957-Sept 1962) Nov 23, 1962 39 p 170 refs Los Alamos Scientific Lab., N. Mex.

    Google Scholar 

  13. Cook, W.H., “Corrosion Resistance of Various Ceramics and Cermets to Liquid Metals”, U.S. Atomic Energy Commission, ORNL- 2391 June 15, 1960, 26 p.

    Google Scholar 

  14. Hoffman, E.E. and Manly, W.D., “Comparison of Sodium, Lithium and Lead as Heat-Transfer Media From a Corrosion Standpoint”. First Nuclear Engineering and Science Congress, v. 1, 1957, p. 128–137.

    Google Scholar 

  15. Weeks, John R. “Corrosion and Mass Transfer In Alkali Liquid Metal Systems”, Paper from “Materials Science and Technology for Advanced Applications”, Prentice Hall, Inc., Englewood Cliffs, N.J., 1962, 709–727

    Google Scholar 

  16. Hays, L., and O’Connor, D., “A 2000°F Lithium Erosion and Component Performance Experiment, Technical Report 32–1150, Jet Propulsion Laboratory, Pasadena, Calif., Oct. 1, 1967.

    Google Scholar 

  17. DeVan, J.H. and Sessions, C>E., “Mass Transfer of Niobium-Based Alloys in Flowing Nonisothermal Lithium”, Nuclear Appl. v 3, No. 2, Feb. 1967 p 102–109

    Google Scholar 

  18. Solubility of Structural Metals in Lithium“ P W A C 256, Pratt & Whitney Aircraft (June 30,1961)

    Google Scholar 

  19. Beskorovaynyy, N.M., and Zuyev “Corrosion Resistance of Titanium in Lithium” Joint Publications Research Service, Wash. D.C. In its Soviet Res. in Production and phys. Met. of Pure Metals Jan. 10, 1964 p 118–123.

    Google Scholar 

  20. DiStefano, James Richard, “Corrosion of Refractory Metals by Lithium”, (M.S. Thesis- Tenn. U.) Mar. 1964 92 p refs.

    Google Scholar 

  21. Lithium Corrosion of Metals“ Joint Publications Research Service, Wash., D.C. 19 Sept. 1966 47 p refs. Transi. into English from the book, ”Metallurgiya i Metallovedeniye Chistykh Metallov, No. V“ Moscow, 1960

    Google Scholar 

  22. Hays, L.G., “Corrosion of Niobium-17. Zirconium Alloy and Yttria by Lithium at High Flow Velocities”, Jet Propulsion Lab., Calif. Inst. of Tech., Pasadena Dec. 1,1967 35 p refs

    Google Scholar 

  23. Phillips, W.M., “Effects of Lithium and Potassium on a Cb-1Zr Rankine Cycle Test Loop” Jet Propulsion Lab Calif. Inst. of Tech., Pasadena Apr. 1 1968 17 p refs

    Google Scholar 

  24. Proceedings of the NASA-AEC Liquid-Metals Corrosion Meeting“, v. 1 National Aeronautics and Space Administration, Lewis Res. Center, Cleveland Oct. 2–3 1963 Washington, NASA, 1964 292 p refs

    Google Scholar 

  25. Restoker, W., McCaughey, J.M., and Markus, M., “Embrittlement by Liquid Metals,” Reinhold Pub., N. Y. New York 1960

    Google Scholar 

  26. Beshorevaynyy, N.M., Yeremeyev, V.S., Zuyev, M.T., Ivanov, V.K. and Tomashpol’skiy, Yu Ya., “Corrosion Resistance of Iron in Lithium”., Joint Pub. Res. Service, Wash., D.C. Soviet Res. in Production and Phys Met. Of Pure Metals Jan 10 1964 p 106–117

    Google Scholar 

  27. Popovich, V.V., Goykhman, M.S., Datsishin, A.M., Toropovskaya, I.N., et al. “Corrosion Resistance of Armco Iron in Liquid Lithium”. Fiz Khim Mekhan Materialov, no. 1, 1967 p 24–32

    Google Scholar 

  28. Beskorovainii, N.M., Eremejew, W.S., Sujew, M.T., Ivanow, W.T.K., and Tomaschpolskii, Ju Ja., “The Resistance of Iron to Lithium Corrosion” Metall, v 19, no 12, Dec. 1965, p 1267–1271

    Google Scholar 

  29. Spsuedi, P., and Beruabai, U., “Behavior of Carbon Steel in Melted Lithium at Different Temperatures”., Metallurgia ItalinaAtti-Notizie, v. 53, 1961, p 505–508

    Google Scholar 

  30. Beskorovainyi, N.M., and Ivanov, V.K., “Mechanism Underlying the Corrosion of Carbon Steels in Lithium.”, Paper from “High-Purity Metals and Alloys Fabrication, Properties, and Testing” Plenum Press, 227 West 17th St., New York 10011, 1967, p 121–129.

    Google Scholar 

  31. Beskerevaynyy, N.M., Zuyev, M.T., and Yeremeyev, V.S., “Reaction of Austenite Chromium-Nickel Steel with Liquid Lithium, ”Joint Pub. Res. Service, Wash., D.C., Soviet Res. in Production and Phys. Met. of Pure Metals Jan. 10, 1964 p 97–105 refs.

    Google Scholar 

  32. Beskorovainyi, N.M., Ivanov V.K., and Petrashko, V.V., “Corrosion of Stainless Chromium-Nickel Steel in Molten Lithium” Paper from “High-Purity Metals and Alloys Fabrication, Properties, and Testing” Plenum Press, 227 West 17th St., New York 10011, 1967 p 131–137

    Google Scholar 

  33. Bebkovich, Ya.K., Shatinskiy, V.F., and Chayevskiy, M. I., “Strength and Plasticity of Weld Joints Operating in Contact with Liquid Lithium”, Transl. into English from Fiz-Khlm, Mekhan, Materialov, Akad, Nauk Ukr, SSR (Kiev), v. 4 no. 1 1968 p 3–21 Joint Pub. Res. Service Wash., D.C.

    Google Scholar 

  34. Nikitin, V.I., “The Non-Selective Corrosion of Alloy Steels in Liquid Low Melting Point Metals” Russ.Met., no 6, 1965, p 110–116

    Google Scholar 

  35. Seebold, R.E., Birks, L.S., and Brooks, E.J., “Selective Removal of Chromium From Type 304 Stainless Steel by Air-Contaminated Lithium” Corrosion, v. 16, Sept 1960 p 468t - 470t.

    Article  Google Scholar 

  36. Leavenworth, H.W., and Gregory, D.P., “Mass Transfer of Type 316 Stainless Steel by Liquid Lithium” Corrosion v. 18, Feb. 1962 p 43t - 44t

    Article  Google Scholar 

  37. Gill, W.N., Vanek, R.P., Jelinek R.V., and Grove, C.S., “Mass Transfer in Liquid-Lithium Systems”, A.I.ChE. Journal V. 6, No. 1, Mar. 1960 p 139

    Google Scholar 

  38. Cleary, R.E. and Leavenworth, H.W. “The Solubility of Iron, Nickel, Chromium, Titanium, and Molybdenum in Liquid Lithium” Acta Met May 1961 p 519

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer Science+Business Media New York

About this chapter

Cite this chapter

DeVries, G. (1970). The Corrosion of Metals by Molten Lithium. In: Draley, J.E., Weeks, J.R. (eds) Corrosion by Liquid Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1845-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1845-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1847-7

  • Online ISBN: 978-1-4684-1845-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics