Skip to main content

Extracellular Cyclic Nucleotide Metabolism in the Human Central Nervous System

  • Chapter
Neurobiology of Cerebrospinal Fluid 1

Abstract

The cyclic nucleotides—adenosine-3′,5′-cyclic mon-ophosphate (cAMP) and guanosine-3′,5′-cyclic monophosphate (cGMP)—serve important metabolic functions in many mammalian tissues (Fig. 1). Glycogen metabolism is the best-studied example of the regulatory function of cAMP in the phosphorylation of phosphorylase b to phosphorylase a.134 The proven and hypothetical roles of cyclic nucleotides in human nonneurological disease have been described in detail elsewhere.7,12,13,69,84,97,149,151 The role of cyclic nucleotides in human neurological diseases is beginning to be explored.24,52,53,158 The evidence defining the importance of cyclic nucleotides in many facets of central and peripheral nervous system functions is briefly reviewed below.34,35,38,81,106,114

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, K., Numano, F.: Phosphodiesterase inhibitors: Their comparative effectiveness in vitro in various organs. Jpn. J. Pharmacol27:97–103, 1977.

    Google Scholar 

  2. Angel, C., Deluca, D. C., Murphree, O. D.: Pro-benecid-induced accumulation of cyclic nucleotides, 5-hydroxyindoleacetic acid, and homovanillic acid in cisternal spinal fluid of genetically nervous dogs. Biol. Psychiatry11:743–753, 1976.

    Google Scholar 

  3. Astin, K. J., Wilde, C. E., Davies-Jones, G. A. B.: Glucose metabolism and insulin response in the plasma and CSF in motor neuron disease. J. Neurol. Sci. 25:205–210, 1975.

    Google Scholar 

  4. Ball, J. H., Kaminsky, N. I., Hardman, J. G., Broadus, A. E., Sutherland, E. W., Liddle, G. W.: Effect of catecholamines and adrenergic blocking agents on plasma and urinary cyclic nucleotides in man. J. Clin. Invest. 51:2124–2129, 1972.

    Google Scholar 

  5. Belmaker, R. H., Ebstein, R. P., Biederman, J., Stern, J., Berman, M., van Praag, H. M.: The effect of L-DOPA and propranolol on human CSF cyclic nucleotides. Psychopharmacology58:307–310, 1978.

    Google Scholar 

  6. Biederman, J., Rimon, R., Ebstein, R., Zohar, J., Belmaker R.: Neuroleptics reduce spinal fluid cyclic AMP in schizophrenic patients. Neuropsychobiology2:324–327, 1976.

    Google Scholar 

  7. Bitensky, M. W., Keirns, J. J., Freeman, J.: Cyclic adenosine monophosphate and clinical medicine. Part I. Calcium and phosphate metabolism. Am. J. Med. Sci. 266:320–347, 1973.

    Google Scholar 

  8. Bloom, F. E.: The role of cyclic nucleotides in central synaptic function. Rev. Physiol. Biochem. Pharmacol. 74:1–104, 1975.

    Google Scholar 

  9. Bloom, F. E., Hoffer, B. J., Battenberg, E. F., Siggins, G. R., Steiner, A. L., Parker, C. W., Wedner, H. J.: Adenosine 3′,5′-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence. Science177:436–438, 1972.

    Google Scholar 

  10. Bowers, M. B., Jr., Study, R. E.: Cerebrospinal fluid cyclic AMP and acid monoamine metabolites following probenecid: Studies in psychiatric patients. Psy-chopharmacology62:17–22, 1979.

    Google Scholar 

  11. Breckenridge, B. McL. Johnson, R. E.: Cyclic 3′,5′-nucleotide phosphodiesterase in brain. J. Histochem. Cytochem. 17:505–511, 1969.

    Google Scholar 

  12. Broadus, A. E.: Clinical cyclic nucleotide research. Adv. Cyclic Nucleotide Res. 8:509–548, 1977.

    Google Scholar 

  13. Broadus, A. E., Hardman, J. G., Kaminsky, N. I., Ball, J. H., Sutherland, E. W., Liddle, G. W.: Extracellular cyclic nucleotides. Ann. N.Y. Acad. Sci. 185:50–69, 1971.

    Google Scholar 

  14. Broadus, A. E., Kaminsky, N. I., Hardman, J. G., Sutherland, E. W., Liddle, G. W.: Kinetic parameters and renal clearances of plasma adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophos-phate in man. J. Cin. Invest. 49:2222–2236, 1970.

    Google Scholar 

  15. Broadus, A. E., Kaminsky, N. I., Northcutt, R. C., Hardman, J. G., Sutherland, E. W., Liddle, G. W.: Effects of glucagon on adenosine 3′,5′-monophos-phate and guanosine 3′,5′-monophosphate in human plasma and urine. J. Clin. Invest. 49:2237–2245, 1970.

    Google Scholar 

  16. Brooks, B. R., Engel, W. K., Sode, J.: Blood-to-cer-ebrospinal fluid barrier for cyclic adenosine mono-phosphate in man. Arch. Neurol. 34:468–469, 1977.

    Google Scholar 

  17. Brooks, B. R., Lust, W. D., Andrews, J. M., Engel, W. K.: Decreased spinal cord cGMP in murine (WOBBLER) spontaneous lower motor neuron degeneration. Arch. Neurol. 35:590–591, 1978.

    Google Scholar 

  18. Brooks, B. R., Sode, J., Engel, W. K.: Cyclic nucleotide metabolism in neuromuscular disease. In Andrews, J. M., Johnson, R. T., Brazier, M. A. B. (eds.): Amyotrophic Lateral Sclerosis: Recent Research Trends, U.C.L.A. Forum in Medical Sciences, Vol. 19. New York, Academic Press, 1976, pp. 101–118.

    Google Scholar 

  19. Brooks, B. R., Wood, J., Sode, J., Engel, W. K.: Cyclic nucleotide metabolism in neurological disease. Trans. Am. Neurol. Assoc. 101:221–222, 1976.

    Google Scholar 

  20. Butcher, R. W., Ho, R. J., Meng, H. C, Sutherland, E. W.: Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. Biol. Chem. 240:4515–4523, 1965.

    Google Scholar 

  21. Castaner, J., Hillier, K.: Phthalazinol: Cardiovascular agent and phosphodiesterase inhibitor. Drugs Future3:55–58, 1978.

    Google Scholar 

  22. Cheung, W. Y., Salganicoff, L.: Cyclic 3′,5′-nu-cleotide phosphodiesterase: Localization and latent activity in rat brain. Nature (London)214:90–91, 1967.

    Google Scholar 

  23. Clarenbach, P. A., Wenzel, D. C., Cramer, H.: Cyclic AMP in cerebrospinal fluid of rats: Effects of electroconvulsive shock. Eur. Neurol. 17:83–86, 1978.

    Google Scholar 

  24. Cramer, H.: Cyclic 3′,5′-nucleotides in extracellular fluids of neural systems. J. Neurosci. Res. 3:241–246, 1977.

    Google Scholar 

  25. Cramer, H., Goodwin, F. K., Post, R. M., Bunney, W. E., Jr.: Effects of probenecid and exercise on cerebrospinal fluid cyclic AMP in affective illness. Lancet1:1346–1347, 1972.

    Google Scholar 

  26. Cramer, H., Lindl, T.: Probenecid inhibits efflux of adenosine 3′,5′-monophosphate (cAMP) from cerebrospinal fluid (CSF) in the rat. Psychopharmacology26(Suppl.):49, 1972.

    Google Scholar 

  27. Cramer, H., Ng, L. K. Y., Chase, T. N.: Effect of probenecid on levels of cyclic AMP in human cerebrospinal fluid. J. Neurochem. 19:1601–1602, 1972.

    Google Scholar 

  28. Cramer, H., Ng, L. K. Y., Chase, T. N.: Adenosine 3′,5′-monophosphate in cerebrospinal fluid: Effect of drugs and neurologic disease. Arch. Neurol. 29:197–199, 1973.

    Google Scholar 

  29. Cramer, H., Renaud, B., Billiard, M., Mouret, J., Hammers, R.: Monoamine metabolites and cyclic nucleotides in the cerebrospinal fluid with bismuth or mercury poisoning. Arch. Psychiatr. Nervenkr. 226:173–181, 1978.

    Google Scholar 

  30. Cramer, H., Renaud, B., Ortega-Suhr Kamp, E.: Concentration of cyclic AMP in lumbar, cisternal, and ventricular cerebrospinal fluid in neurological patients. Z. Klin. Chem. Klin. Biochim. 13:245, 1975.

    Google Scholar 

  31. Cserr, H.: Physiology of the choroid plexus. Physiol. Rev. 51:273–311, 1971.

    Google Scholar 

  32. Cserr, H., Van Dyke, D. H.: 5-Hydroxyindole-acetic acid accumulation in isolated choroid plexus. Am. J. Physiol. 220:718–723, 1971.

    Google Scholar 

  33. Cumming, R., Eccleston, D., Steiner A.: Immuno-histochemical localization of cyclic GMP in rat cerebellum. J. Cyclic Nucleotide Res. 3:275–282, 1977.

    Google Scholar 

  34. Daly, J. W.: The formation, degradation, and function of cyclic nucleotides in the nervous system. Int. Rev. Neurobiol. 20:105–168, 1977.

    Google Scholar 

  35. Daly, J. Cyclic Nucleotides in the Nervous System. New York, Plenum Press, 1977.

    Google Scholar 

  36. Dascombe, M. J., Milton, A. S.: Cyclic adenosine-3′,5′-monophosphate in cerebrospinal fluid. Br. J. Pharmacol. 54:254P–255P, 1975.

    Google Scholar 

  37. Davoren, R. P., Sutherland, E. W.: The effect of L-epinephrine and other agents on the synthesis and release of adenosine 3′,5′-phosphate by whole pigeon erythrocytes. J. Biol. Chem. 238:3009–3015, 1963.

    Google Scholar 

  38. DeLuca, D. C., Angel, C., Murphree, O. D.: Effects of amphetamine and chlordiazepoxide on probene-cid-induced accumulation of acidic metabolites in the cerebrospinal fluid of the dog. Biol. Psychiatry12:577–582, 1977.

    Google Scholar 

  39. Drummond, G. I.: Metabolism and functions of cyclic AMP in nerve. Prog. Neurobiol. 2:120–176, 1972.

    Google Scholar 

  40. Dubrovsky, A. L., Engel, W. K.: New histochemical technique for the demonstration of adenyl cyclase (AC) in nervous tissue and muscle. Trans. Am. Neurol. Assoc. 101:83–84, 1976.

    Google Scholar 

  41. Ebstein, R. P., Biederman, J., Rimon, R., Zohar, J., Belmaker, R. H.: Cyclic CMP in the CSF of patients with schizophrenia before and after neuroleptic treatment. Psychopharmacology51:71–74, 1976.

    Google Scholar 

  42. Egrie, J. C., Campbell, J. A., Flangas, A. L., Siegel, F. L.: Regional, cellular, and subcellular distribution of calcium-activated cyclic nucleotide phosphodies-terase and calcium dependent regulator in porcine brain. J. Neurochem. 28:1207–1213, 1977.

    Google Scholar 

  43. Farber, D. B., Lolley, R. N.: Cyclic guanosine mon-ophosphate: Elevation in degenerating photoreceptor cells of the C3H mouse retina. Science186:449–451, 1974.

    Google Scholar 

  44. Feinglos, M. N., Drezner, M. K., Lebovitz, H. E.: Measurement of plasma adenosine 3′,5′-monophos-phate. J. Clin. Endocrinol. Metab. 46:824–829, 1978.

    Google Scholar 

  45. Felber, J. P.: Radioimmunoassay in the clinical laboratory. Adv. Clin. Chem. 20, 130–179, 1978.

    Google Scholar 

  46. Feldman, A. M., Epstein, M. H., Brusilow, S. W.: Role of cyclic AMP in cerebrospinal fluid production. In Wood, J. H. (ed.) Neurobiology of Cerebrospinal Fluid I. New York, Plenum Press, 1980.

    Google Scholar 

  47. Ferrendelli, J. A.: Role of cyclic GMP in the function of the central nervous system. In Weiss, B. (ed.) Cyclic Nucleotides in Disease. Baltimore, University Park Press, 1975, pp. 377–390.

    Google Scholar 

  48. Ferrendelli, J. A.: Distribution and regulation of cyclic GMP in the central nervous system. Adv. Cyclic Nucleotide Res. 9:453–464, 1978.

    Google Scholar 

  49. Ferrendelli, J. A., Kinscherf, D. A., Chang, M. M.: Comparison of the effects of biogenic amines on cyclic GMP and cyclic AMP levels in mouse cerebellum in vitro. Brain Res. 84:63–73, 1975.

    Google Scholar 

  50. Ferrendelli, J. A., Rubin, E. H., Orr, H. T., Kinscherf, D. A., Lowry, O. H.: Measurement of cyclic nucleotides in histologically defined samples of brain and retina. Anal. Biochem. 78:252–259, 1977.

    Google Scholar 

  51. Fishman, R. A.: Carrier transport of glucose between blood and cerebrospinal fluid. Am. J. Physiol. 206:836–844, 1964.

    Google Scholar 

  52. Fleischer, A. S., Rudman, D. R., Fresh, C. B., Tindall, G. T.: Concentration of 3′,5′-cyclic adenosine monophosphate in ventricular CSF of patients following severe head trauma. J. Neurosurg. 47:517–524, 1977.

    Google Scholar 

  53. Fleischer, A. S., Tindall, G. T.: Cerebrospinal fluid cyclic nucleotide alterations in traumatic coma. In Wood, J. H. (ed.): Neurobiology of Cerebrospinal Fluid I. New York, Plenum Press, 1980.

    Google Scholar 

  54. Florendo, N. T., Barrnett, R. J., Greengard, P.: Cyclic 3′,5′-nucleotide phosphodiesterase cytochemical localization in cerebral cortex. Science173:745–747, 1971.

    Google Scholar 

  55. Florendo, N. T., Greengard, P., Barrnett, R. T.: Fine structural localization of cyclic 3′,5′-nucleotide phosphodiesterase in rat cerebral cortex. J. Histochem. Cytochem. 18:682–685, 1970.

    Google Scholar 

  56. Frazier, W. A., Ohlendorf, C. E., Boyd, L. F., Alde, L., Johnson, E. M., Ferrendelli, J. A., Bradshaw, R. A.: Mechanism of action of nerve growth factor and cyclic adenosine 3′,5′-monophosphate in neurite outgrowth in embryonic chick sensory ganglia: Demonstration of independent pathways of stimulation. Proc. Natl. Acad. Sci. U.S.A. 70:2884–2452, 1973.

    Google Scholar 

  57. Garelis, E., Neff, N. H.: Cyclic adenosine monophosphate: Selective increase in caudate nucleus after administration of L-dopa. Science183:532–533, 1974.

    Google Scholar 

  58. Geisler, A., Bech, P., Johannesen, M., Rafaelsen, O. J.: Cyclic AMP levels in cerebrospinal fluid in manic-melancholic patients. Neuropsychobiology2:211–220, 1976.

    Google Scholar 

  59. Gelfand, M., Cohan, S. L., Winchester, J. F., Knepshield, J. H.: The treatment of hepatic coma by charcoal hemoperfusion. Neurology29:540, 1979.

    Google Scholar 

  60. Gilman, A. G.: A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Natl. Acad. Sci. U.S.A. 67:305–312, 1970.

    Google Scholar 

  61. Gilman, A. G.: Protein binding assays for cyclic nucleotides. Adv. Cyclic Nucleotide Res. 2:9–24, 1972.

    Google Scholar 

  62. Goldberg, M. L.: Radioimmunoassay for adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in human blood, urine, and cerebrospinal fluid. Clin. Chem. 23:576–580, 1977.

    Google Scholar 

  63. Goldberg, N. D., Lust, W. D., O’dea, R. F., Wei, S., O’Toole, A. G.: A role of cyclic nucleotides in brain metabolism. Adv. Biochem. Psychopharmacol. 3:67–87, 1970.

    Google Scholar 

  64. Goldberg, N. D., O’Toole, A. G., Haddox, M. K.: Analysis of cyclic AMP and cyclic GMP by enzymic cycling procedures. Adv. Cyclic Nucleotide Res. 2:63–80, 1972.

    Google Scholar 

  65. Goridis, C, Massarelli, R., Sensenbrenner, M., Mandel, P.: Guanyl cyclase in chick embryo brain cell cultures: Evidence of neuronal localization. J. Neurochem. 23:135–138, 1974.

    Google Scholar 

  66. Gorin, E., Brenner, T.: Extracellular metabolism of cyclic AMP. Biochim. Biophys. Acta451:20–28, 1976.

    Google Scholar 

  67. Hales, C. N., Randle, P. J.: Immunoassay of insulin with insulin-antibody precipitate. Biochem. J. 88:137–146, 1963.

    Google Scholar 

  68. Hammers, R., Clarenbach, P., Lindl, T., Cramer, H.: Uptake and metabolism of cyclic AMP in rabbit choroid plexus in vitro. Neuropharmacology16:135–141, 1977.

    Google Scholar 

  69. Hardman, J. G., Robinson, G. A., Sutherland, E. W.: Cyclic nucleotides. Annu. Rev. Physiol. 33:311–336, 1971.

    Google Scholar 

  70. Harper, J. F., Brooker, G.: Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2’O acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1:207–218, 1975.

    Google Scholar 

  71. Heikkinen, E. R., Myllyla, V. V., Hokkanen, E., Vapaatalo, H.: Cerebrospinal fluid concentration of cyclic AMP in cerebrovascular diseases. Eur. Neurol. 14:129–137, 1976.

    Google Scholar 

  72. Heikkinen, E. R., Myllyla, V. V., Vapaatalo, H., Kokkanen, E.: Urinary excretion and cerebrospinal fluid concentration of cyclic adenosine-3′,5′-mono-phosphate in various neurological diseases. Eur. Neurol. 11:270–280, 1974.

    Google Scholar 

  73. Heikkinen, E. R., Simila, S., Myllyla, V. V., Hok-Kanen, E., Vapaatalo, H.: Cyclic adenosine-3′,5′-monophosphate concentration and enzyme activities of cerebrospinal fluid in meningitis of children. Z. Kinderheilkd. 120:243–250, 1975.

    Google Scholar 

  74. Hidaka, H., Shibuya, M., Asano, T., Hara, F.: Cyclic nucleotide phosphodiesterase of human cerebrospinal fluid. J. Neurochem. 25:49–53, 1975.

    Google Scholar 

  75. Joo, F., Toth, I.: Brain adenylate cyclase: Its common occurrence in the capillaries and astrocytes. Naturwissenschaften 62:397–398, 1975.

    Google Scholar 

  76. Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., Miyamoto, E.: Multiple cyclic nucleotide phosphodiesterase activities from rat tissues and occurrence of a calcium-plus-magnesium-non-dependent phosphodiesterase and its protein activator. Biochem. J. 146:109–120, 1975.

    Google Scholar 

  77. Kaminsky, N. I., Broadus, A. E., Hardman, J. G., Jones, D. J., Jr., Ball, J. H., Sutherland, E. W., Liddle, E. W.: Effects of parathyroid hormone on plasma and urinary adenosine 3′,5′-monophosphate in man. J. Clin. Invest. 49:2387–2395, 1970.

    Google Scholar 

  78. Kartzinel, R., Ebert, M. H., Chase, T. N.: Intravenous probenecid loading: Effects on plasma and cerebrospinal fluid probenecid levels and on monoamine metabolites in cerebrospinal fluid. Neurology26:992–996, 1976.

    Google Scholar 

  79. Kassan, S. S., Kagen, L. J.: Elevated levels of cerebrospinal fluid guanosine 3′,5′-cyclic monophosphate (cGMP) in systemic lupus erythematosus. Am. J. Med. 64:732–741, 1978.

    Google Scholar 

  80. Katz, J. B., Catravas, G. N., Valases, C, Weight, S. J., Jr.: Morphine reduces cerebellar guanosine 3′,5′-cyclic monophosphate content and elevates cerebrospinal fluid guanosine-3′,5′-cyclic monophosphate content in rhesus monkeys. Life Sci. 22:467–472, 1978.

    Google Scholar 

  81. Katz, J. B., Valases, C, Catravas, G. N., Wright, S. J.: Cerebrospinal fluid cyclic AMP levels in rhesus monkeys: Daily fluctuations. Life Sci. 22:445–450, 1978.

    Google Scholar 

  82. Kebabian, J. W.: Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system. Adv. Cyclic Nucleotide Res. 8:421–508, 1977.

    Google Scholar 

  83. Kebabian, J. W., Steiner, A. L., Greengard, P.: Muscarinic cholinergic regulation of cyclic guanosine 3′,5′-monophosphate in autonomic ganglia: Possible role in synaptic transmission. J. Pharmacol. Exp. Ther. 193:474–488, 1975.

    Google Scholar 

  84. Keirns, J. J., Freeman, J., Bitensky, M. W.: Cyclic adenosine monophosphate and clinical medicine. Part II. Carbohydrate and lipid metabolism. Am. J. Med. Sci. 268:62–92, 1974.

    Google Scholar 

  85. Kiessling, M., Lindl, T., Cramer, H.: Cyclic adenosine-monophosphate in cerebrospinal fluid: Effects of theophylline, L-dopa and a dopamine receptor stimulant in rats. Arch. Psychiatr. Nervenkr. 220:325–333, 1975.

    Google Scholar 

  86. Kodama, T., Matsukado, Y., Shimizu, H.: The cyclic AMP system of human brain. Brain Res. 50:135–146, 1973.

    Google Scholar 

  87. Korf, J., Boer, P. H., Fekkes, D.: Release of cerebral cyclic AMP into push-pull perfusates in freely moving rats. Brain Res. 113:551–561, 1976.

    Google Scholar 

  88. Krnjevic, K., Puil, E., Werman, R.: IS cyclic guanosine monophosphate the internal “second messenger” for cholinergic actions on central neurons? Can. J. Physiol. Pharmacol. 54:172–176, 1976.

    Google Scholar 

  89. Krnjevic, K., Van Meter, W. G.: Cyclic nucleotides in spinal cells. Can. J. Physiol. Pharmacol. 54:416–421, 1976.

    Google Scholar 

  90. Landis, S. C: Ultrastructural changes in mitochondria of cerebellar Purkinje cells of “nervous” mutant mice. J. Cell. Biol. 57:782–797, 1973.

    Google Scholar 

  91. Lemay, A., Jarett, L.: Pitfalls in the use of lead nitrate for the histochemical demonstration of adenylate cyclase activity. J. Cell Biol. 65:39–50, 1975.

    Google Scholar 

  92. Lindl, T., Cramer, H.: Formation, accumulation and release of adenosine 3′,5′-monophosphate induced by histamine in the superior cervical ganglion of the rat in vitro. Biochim. Biophys. Acta343:182–191, 1974.

    Google Scholar 

  93. Mao, C. C, Guidotti, A., Costa, E.: Interactions between gamma-aminobutyric acid and cyclic guanosine 3′,5′-monophosphate in rat cerebellum. Mol. Pharmacol. 10:736–745, 1974.

    Google Scholar 

  94. Mao, C. C, Guidotti, A., Costa, E.: The regulation of cyclic GMP in rat cerebellum: Possible involvement of putative amino-acid neurotransmitters. Brain Res. 79:510–514, 1974.

    Google Scholar 

  95. Mao, C. C, Guidotti, A., Costa, E.: Inhibition by diazepam of the tremor and the increase of cerebellar cGMP content elicited by harmoline. Brain Res. 83:516–519, 1975.

    Google Scholar 

  96. Mao, C. C, Guidotti, A., Landis, S. C: Cyclic GMP: Reduction of cerebellar concentrations in “nervous” mutant mice. Brain Res. 90:335–339, 1975.

    Google Scholar 

  97. Murad, F.: Clinical studies and applications of cyclic nucleotides. Adv. Cyclic Nucleotide Res. 3:356–383, 1973.

    Google Scholar 

  98. Murad, F., Rall, T. W., Vaughan, M.: Conditions for the formation, partial purification and assay of an inhibitor of adenosine 3′,5′-monophosphate. Biochim. Biophys. Acta192:430–445, 1969.

    Google Scholar 

  99. Murphree, O. D., Angel, C, Deluca, D. C, Newton, J. E. O.: Longitudinal studies of genetically nervous dogs. Biol. Psychiatry12:573–576, 1977.

    Google Scholar 

  100. Myllyla, V. V.: Effect of convulsions and anticon-vulsive drugs on cerebrospinal fluid cyclic AMP in rabbits. Eur. Neurol. 14:97–107, 1976.

    Google Scholar 

  101. Myllyla, V. V.: Effect of cerebral injury on cerebrospinal fluid cyclic AMP concentration. Eur. Neurol. 14:413–425, 1976.

    Google Scholar 

  102. Myllyla, V. V., Heikkinen, E. R., Simila, S., Hok-Kanen, E., Vapaatalo, H.: Cerebrospinal fluid concentration and urinary excretion of cyclic adenosine-3′,5′-monophosphate in various diseases of children: A preliminary study. Z. KinderHeilkd. 118:259–264, 1976.

    Google Scholar 

  103. Myllyla, V. V., Keikkinen, E. R., Vapaatalo, H., Hokkanen, E.: Cyclic AMP concentration and enzyme activities of cerebrospinal fluid in patients with epilepsy or central nervous system damage. Eur. Neurol. 13:123–130, 1975.

    Google Scholar 

  104. Myllyla, V. V., Vapaatalo, H., Hokkanen, E., Heikkinen, E. R.: Cerebrospinal fluid concentration of cyclic adenosine 3′,5′-monophosphate and pneu-moencephalography. Eur. Neurol. 12:28–32, 1974.

    Google Scholar 

  105. Nakazawa, K., Sano, M.: Studies on guanylate cy-clase: A new assay method for guanylate cyclase and properties of the cyclase from rat brain. J. Biol. Chem. 249:4207–4211, 1974.

    Google Scholar 

  106. Nathanson, J. A.: Cyclic nucleotides and nervous system function. Physiol. Rev. 57:157–256, 1977.

    Google Scholar 

  107. Neff, N. H., Tozer, T. N., Brodie, B. B.: Application of steady-state kinetics to studies of the transfer of 5-hydroxyindole acetic acid from brain to plasma. J. Pharmacol. Exp. Ther. 158:214–218, 1967.

    Google Scholar 

  108. Orenberg, E. K., Zarcone, V. P., Renson, J. F., Barchas, J. D.: The effects of ethanol ingestion on cyclic AMP, homovanillic acid and 5-hydroxyindole acetic acid in human cerebrospinal fluid. Life Sci. 19:1669–1672, 1976.

    Google Scholar 

  109. Ortmann, R., Perkins, J. P.: Stimulation of adenosine 3′,5′-monophosphate formation by prostaglan-dins in human astrocytoma cells. J. Biol. Chem. 252:6018–6025, 1977.

    Google Scholar 

  110. Penit, J., Jard, S., Benda, P.: Probenecid sensitive 3′,5′-cyclic AMP secretion by isoproterenol stimulated glial cells in culture. FEBS Lett. 41:156–160,1974.

    Google Scholar 

  111. Perkins, J. P., Moore, M. M., Kalisker, A., Su, Y. F.: Regulation of cyclic AMP content in normal and malignant brain cells. Adv. Cyclic Nucleotide Res. 5:641–660, 1975.

    Google Scholar 

  112. Perlow, M., Gordon, E., Ebert, M., Festoff, B., Chase, T. N.: The circadian pattern of catecholamine metabolites and cAMP in the cerebrospinal fluid of subhuman primates. Trans. Am. Neurol. Assoc. 101:279–280, 1976.

    Google Scholar 

  113. Perlow, M. J., Lake, C. R.: Daily fluctuations in cerebrospinal fluid concentrations of catecholamines, monoamine metabolites, and cyclic AMP, and γ-aminobutyric acid in rhesus monkeys. In Wood, J. H. (ed.): Neurobiology of Cerebrospinal Fluid I. New York, Plenum Press, 1980.

    Google Scholar 

  114. Phillis, J. W.: The role of cyclic nucleotides in the CNS. Can. J. Neurol. Sci. 4:151–195, 1977.

    Google Scholar 

  115. Post, R. M., Cramer, H., Goodwin, F. K.: Cyclic AMP in cerebrospinal fluid in patients with affective illness: Effects of probenecid, activity, and psycho-tropic medications. In Usdin, E., Hamburg, D. A., Barchas, J. D. (eds.): Neuroregulators and Psychiatric Disorders. New York, Oxford University Press, 1977, pp. 464–469.

    Google Scholar 

  116. Post, R. M., Goodwin, F. K.: Estimation of brain amine metabolism in affective illness: Cerebrospinal fluid studies utilizing probenecid. Psycother. Psychosom. 23:142–158, 1974.

    Google Scholar 

  117. Post, R. M., Goodwin, F. K., Gordon, E., Watkin, D. M.: Amine metabolites in human cerebrospinal fluid: Effects of cord transection and spinal fluid block. Science179:897–899, 1973.

    Google Scholar 

  118. Prasad, K. N., Sahu, S. K., Kumar, S.: Relationship between cyclic AMP level and differentiation of neu-roblastoma cells in culture. In Nakahara, W., Ono, T., Sugimura, T., Sugano, H. (eds.): Differentiation and Control of Malignancy of Tumor Cells. Baltimore, University Park Press, 1974, pp. 287–309.

    Google Scholar 

  119. Rindler, M. J., Bashor, M. M., Spitzer, N., Saier, M. H., Jr.: Regulation of adenosine 3′,5′-monophos-phate efflux from animal cells. J. Biol. Chem. 253:5431–5436, 1978.

    Google Scholar 

  120. Robison, G. A., Coppen, A. J., Whybrow, P. C., Prange, A. J.: Cyclic AMP in affective disorders. Lancet2:1028–1029, 1970.

    Google Scholar 

  121. Roisen, F. J., Murphy, R. A., Braden, W. G.: Dibutyryl cyclic adenosine monophosphate stimulation of colcemide-inhibition axonal elongation. Science177:809–811, 1972.

    Google Scholar 

  122. Roisen, F. J., Murphy, R. A., Pichichero, M. E., Braden, W. G.: Cyclic adenosine monophosphate stimulation of axonal elongation. Science177:73–74, 1972.

    Google Scholar 

  123. Rubin, E. H., Ferrendelli, J. A.: Distribution and regulation of cyclic nucleotide levels in cerebellum in vivo. J. Neurochem. 29:43–51, 1977.

    Google Scholar 

  124. Rudland, P. S., Gospodaprowicz, D., Sieffert, W. E.: Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor. Nature (London)250:741–744, 1974.

    Google Scholar 

  125. Rudman, D., Fleischer, A., Kutner, M. H.: Concentration of 3′,5′-cyclic adenosine monophosphate in ventricular cerebrospinal fluid of patients with prolonged coma after head trauma or intracranial hemorrhage. N. Engl. J. Med. 295:635–638, 1976.

    Google Scholar 

  126. Rudman, D., O’Brien, M. S., Mckinney, A. S., Hoffman, J. C, Jr., Patterson, J. H.: Observations of the cyclic nucleotide concentrations in human cerebrospinal fluid. J. Clin. Endocrinol. Metab. 42:1088–1097, 1976.

    Google Scholar 

  127. Schimmer, B. P.: Effects of catecholamines and mon-ovalent cations on adenylate cyclase activity in cultured glial tumor cells. Biochim. Biophys. Acta252:567–573, 1971.

    Google Scholar 

  128. Schmidt, M. J., Nadi, N. S.: Cyclic nucleotide accumulation in vitro in the cerebellum of “nervous” neurologically mutant mice. J. Neurochem. 29:87–90, 1977.

    Google Scholar 

  129. Schwartzel, E. H., Jr., Bachman, S., Levine, R. A.: Cyclic nucleotide activity in gastrointestinal tissues and fluids. Anal. Biochem. 78:395–405, 1977.

    Google Scholar 

  130. Sebens, J. B., Korf, J.: Cyclic AMP in cerebrospinal fluid: Accumulation following probenecid and bio-genic amines. Exp. Neurol. 46:333–344, 1975.

    Google Scholar 

  131. Sifontes, J. E., Brooke-Williams, R. D., Lincoln, E. M., Clemons, H.: Observations on the effect of induced hyperglycemia on the glucose content of the cerebrospinal fluid in patients with tuberculous meningitis. Am. Rev. Tuberc. 67:732–754, 1953.

    Google Scholar 

  132. Siggins, G. R., Hoffer, B. J., Bloom, F. E.: Studies on norepinephrine containing afferents to Purkinje cells of the rat cerebellum. II. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-AMP. Brain Res. 25:535–553, 1971.

    Google Scholar 

  133. Smith, C. C., Tallman, J. F., Post, R. M., Van-Kammen, D. F., Jimerson, D. C, Brown, G. L., Brooks, B. R., Bunney, W. E., Jr.: An examination of baseline and drug-induced levels of cyclic nucleotide in the cerebrospinal fluid of control and psychiatric patients. Life Sci. 19:131–136, 1976.

    Google Scholar 

  134. Soderling, T. R., Park, C. R.: Recent advances in glycogen metabolism. Adv. Cyclic Nucleotide Res. 4:284–333, 1974.

    Google Scholar 

  135. Spector, R., Lorenzo, A. V.: The effects of salicylate and probenecid on the cerebrospinal fluid transport of penicillin, amino salicyclic acid and iodide. J. Pharmacol Exp. Ther. 188:55–65, 1974.

    Google Scholar 

  136. Steiner, A. L., Ferrendelli, J. A., Kipnis, D. M.: Radioimmunoassay for cyclic nucleotides. III. Effect of ischemia, changes during development and regional distribution of adenosine 3′,5′-monophos-phate and guanosine 3′,5′-monophosphate in mouse brain. J. Biol. Chem. 247:1121–1124, 1972.

    Google Scholar 

  137. Steiner, A. L., Ong, S., Wedner, H. J.: Cyclic nucleotide immunocytochemistry. Adv. Cyclic Nucleotide Res. 7:116–155, 1976.

    Google Scholar 

  138. Steiner, A. L., Pagliara, A. S., Chase, L. R., Kipnis, D. M.: Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids. J. Biol. Chem. 247:1114–1120, 1972.

    Google Scholar 

  139. Steiner, A. L., Parker, C. W., Kipnis, D. M.: The measurement of cyclic nucleotides by radioimmunoassay. Adv. Biochem. Psychopharmacol. 3:89–111, 1970.

    Google Scholar 

  140. Steiner, A. L., Parker, C. W., Kipnis, D. M.: Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J. Biol. Chem. 247:1106–1113, 1972.

    Google Scholar 

  141. Steiner, A. L., Wehmann, R. E., Parker, C. W., Kipnis, D. M.: Radioimmunoassay for the measurement of cyclic nucleotides. Adv. Cyclic Nucleotide Res. 2:51–61, 1972.

    Google Scholar 

  142. Stone, T. W., Taylor, D. A.: Microiontophoretic studies of the effects of cyclic nucleotides on excitability of neurons in the rat cerebral cortex. J. Physiol. (London)266:523–544, 1977.

    Google Scholar 

  143. Sutherland, E. W., Rall, T. W.: Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem. 232:1077–1109, 1958.

    Google Scholar 

  144. Tihon, C., Goren, M. B., Spitz, E., Rickenberg, H. V.: Convenient elimination of trichloroacetic acid prior to radioimmunoassay of cyclic nucleotides. Anal. Biochem. 80:652–653, 1977.

    Google Scholar 

  145. Tominaga, S., Murakami, M., Kojima, S., Suzuki, T., Nakamura, T.: Venous plasma cyclic AMP in acute cerebrovascular disease. Tohoku J. Exp. Med. 120:151–158, 1976.

    Google Scholar 

  146. Tovey, K. C., Oldham, K. G., Whelan, J. A. M.: A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin. Chem. Acta56:221–234, 1974.

    Google Scholar 

  147. Trabucchi, M., Cerri, C., Spano, P. F., Kumakura, K.: Guanosine 3′,5′-monophosphate in the CSF of neurological patients. Arch. Neurol. 34:12–13, 1977.

    Google Scholar 

  148. Tsang, D., Lal, S., Soukes, T. L., Ford, R. M., Aronoff, A.: Studies on cyclic AMP in different compartments of cerebrospinal fluid. J. Neurol Neurosurg. Psychiatry39:1186–1190, 1976.

    Google Scholar 

  149. Volicer, L. (ed.): Clinical Aspects of Cyclic Nucleotides. Jamaica, New York, Spectrum, 1977.

    Google Scholar 

  150. Watanabe, H., Passoneau, J. V.: Cyclic adenosine monophosphate in cerebral cortex: Alterations following trauma. Arch. Neurol32:181–184, 1975.

    Google Scholar 

  151. Weiss, B. (ed.): Cyclic Nucleotides in Disease. Baltimore, University Park Press, 1975.

    Google Scholar 

  152. Weiss, B.: Differential activation and inhibition of the multiple forms of cyclic nucleotide phosphodiester-ase. Adv. Cyclic Nucleotide Res. 5:195–211, 1975.

    Google Scholar 

  153. Weiss, B., Costa, E.: Regional and subcellular distribution of adenyl cyclase and 3′,5′-cyclic nucleotide phosphodiesterase in brain and pineal gland. Biochem. Pharmacol17:2107–2116, 1968.

    Google Scholar 

  154. Weiss, B., Costa, E.: Selective stimulation of adenyl cyclase of rat pineal gland by pharmacologically active catecholamines. J. Pharmacol Exp. Ther. 161:310–319, 1968.

    Google Scholar 

  155. Welch, K. M. A., Chabi, E., Nell, J. H., Bartosh, K., Chee, A. N. C, Mathew, N. T., Achar, U. S.: Biochemical comparison of migraine and stroke. Headache16:160–167, 1976.

    Google Scholar 

  156. Welch, K. M. A., Meyer, J. S.: Neurochemical alterations in cerebrospinal fluid in cerebral ischemia and stroke. In Wood, J. H. (ed.): Neurobiology of Cerebrospinal Fluid I. New York, Plenum Press, 1980.

    Google Scholar 

  157. Welch, K. M. A., Meyer, J. S., Chee, A. N. C: Evidence for disordered cyclic AMP metabolism in patients with cerebral infarction. Eur. Neurol13:144–154, 1975.

    Google Scholar 

  158. Welch, K. M., A., Nell, J., Chabi, E.: The role of cyclic AMP in neurologic and affective disorders. In Volicer, L. (ed.): Clinical Aspects of Cyclic Nucleotides. Jamaica, New York, Spectrum, 1977, pp. 327–360.

    Google Scholar 

  159. Weller, M., Rodnight, R., Carrera, D.: Determination of adenosine 3′,5′-cyclic monophosphate in cerebral tissues by saturation analysis: Assessment of a method using a binding protein from ox muscle. Biochem. J. 129:113–121, 1972.

    Google Scholar 

  160. Williams, R. H., Little, S. A., Beug, A. G., Ensinck, J. W.: Cyclic nucleotide phosphodiesterase activity in man, monkey and rat. Metabolism20:743–748, 1971.

    Google Scholar 

  161. Williams, R. H., Little, S. A., Ensinck, J. W.: Adenyl cyclase and phosphodiesterase activities in brain areas of man, monkey and rat. Am. J. Med. Sci. 258:190–202, 1969.

    Google Scholar 

  162. Wood, J. H., Brooks, B. R.: Neurotransmitter, metabolite, and cyclic nucleotide alterations in cerebrospinal fluid of seizure patients. In Wood, J. H. (ed.): Neurobiology of Cerebrospinal Fluid I. New York, Plenum Press, 1980.

    Google Scholar 

  163. Wood, J. H., Glaeser, B. S., Hare, T. A., Sode, J., Brooks, B. R., Van Buren, J. M.: Cerebrospinal fluid GABA reductions in seizure patients evoked by cer-ebellar surface stimulation. J. Neurosurg. 47:582–589, 1977.

    Google Scholar 

  164. Wood, J. H., Lake, C. R., Ziegler, M. G., Sode, J., Brooks, B. R., Van Buren, J. M.: Cerebrospinal fluid norepinephrine alterations during electrical stimulation of cerebellar and cerebral surfaces in epileptic patients. Neurology27:716–724, 1977.

    Google Scholar 

  165. Ziegler, M. G., Wood, J. H., Lake, C. R., Kopin, I. J.: Norepinephrine and 3-methoxy-4-hydroxy-phenyl glyol gradients in human cerebrospinal fluid. Am. J. Psychiatry134:565–568, 1977.

    Google Scholar 

  166. Zimmerman, T. P., Winston, M. S., Chu, L. C: A more sensitive radioimmunoassay (RIA) for guano-sine 3′,5′-cyclic monophosphate (cGMP) involving prior 2′-O-succinylation of samples. Anal. Biochem. 71:79–95, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Rix Brooks, B. et al. (1980). Extracellular Cyclic Nucleotide Metabolism in the Human Central Nervous System. In: Wood, J.H. (eds) Neurobiology of Cerebrospinal Fluid 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1039-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1039-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1041-9

  • Online ISBN: 978-1-4684-1039-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics