Skip to main content

PET Quantitation of Myocardial Blood Flow

  • Chapter
Atlas of Nuclear Cardiology

Abstract

Positron-emission tomography affords the noninvasive measurement of regional myocardial blood flow in units of milliliters of blood per minute per gram myocardium. With this capability, PET expands the diagnostic possibilities of more traditional nuclear medicine approaches for explaining the human heart’s function and for identifying abnormalities in cardiovascular disease. More conventional nuclear medicine approaches, eg, SPECT, delineate the relative distribution of myocardial blood flow at rest or during physical or pharmacologically induced stress. While accurately identifying flow-limiting coronary stenoses, their location, and extent, such evaluations of the relative distribution of myocardial blood flow have remained incomplete for two reasons. First, myocardial regions with the highest radiotracer uptake are defined as normal on the images when, in fact, they may be subtended by diseased coronary arteries. Second, evaluating only the relative distribution of myocardial blood flow may fail to uncover balanced coronary artery stenosis or identify coronary artery disease still without flow-limiting stenosis. The flow tracer may distribute homogeneously throughout the left ventricular myocardium, while myocardial blood flow in absolute units may be abnormal. It is now widely accepted that the majority of acute coronary events originate in coronary vessels without significant angiographic stenosis. Therefore, identification of such preclinical disease could prove clinically important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schelbert HR, Phelps ME, Huang SC, et al.: N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981, 63:1259–1272.

    Article  PubMed  CAS  Google Scholar 

  2. Krivokapich J, Smith GT, Huang SC, et al.: 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 1989, 80:1328–1337.

    Article  PubMed  CAS  Google Scholar 

  3. Kuhle WG, Porenta G, Huang SC, et al.: Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992, 86:1004–1017.

    Article  PubMed  CAS  Google Scholar 

  4. Bergmann SR, Herrero P, Markham J, et al.: Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989, 14:639–652.

    Article  PubMed  CAS  Google Scholar 

  5. Araujo L, Lammertsma A, Rhodes C, et al.: Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991, 83:875–885.

    Article  PubMed  CAS  Google Scholar 

  6. Pitkänen OP, Raitakari OT, Niinikoski H, et al.: Coronary flow reserve is impaired in young men with familial hypercholesterolemia.J Am Coll Cardiol 1996, 28:1705–1711.

    Article  PubMed  Google Scholar 

  7. Yokoyama I, Ohtake T, Momomura S, et al.: Altered myocardial vasodilatation in patients with hypertriglyceridemia in anatomically normal coronary arteries. Arterioscler Thromb Vasc Biol 1998, 18:294–299.

    Article  PubMed  CAS  Google Scholar 

  8. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, et al.: Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET.J Nucl Med 1999, 40:1848–1856.

    PubMed  CAS  Google Scholar 

  9. Tadamura E, Iida H, Matsumoto K, et al.: Comparison of myocardial blood flow during dobutamine-atropine infusion with that after dipyridamole administration in normal men. J Am Coll Cardiol 2001, 37:130–136.

    Article  PubMed  CAS  Google Scholar 

  10. Hutchins GD, Schwaiger M, Rosenspire KC, et al.: Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990, 15:1032–1042.

    Article  PubMed  CAS  Google Scholar 

  11. Chan SY, Brunken RC, Czernin J, et al.: Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men.J Am Coll Cardiol 1992, 20:979–985.

    Article  PubMed  CAS  Google Scholar 

  12. Czernin J, Müller P, Chan S, et al.: Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993, 88:62–69.

    Article  PubMed  CAS  Google Scholar 

  13. Wilson R, Laughlin D, Ackell P: Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985, 72:82–89.

    Article  PubMed  CAS  Google Scholar 

  14. Czernin J, Auerbach M, Sun KT, et al.: Effects of modified pharmacologic stress approaches on hyperemic myocardial blood flow.J Nucl Med 1995, 36:575–580.

    PubMed  CAS  Google Scholar 

  15. Böttcher M, Czernin J, Sun KT, et al.: Effect of caffeine on myocardial blood flow at rest and during pharmacological vasodilation.J Nucl Med 1995, 36:2016–2021.

    PubMed  Google Scholar 

  16. Böttcher M, Czernin J, Sun K, et al.: Effect of beta 1 adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity.J Nucl Med 1997, 38:442–446.

    PubMed  Google Scholar 

  17. Buus NH, Böttcher M, Hermansen F, et al.: Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation 2001, 104:2305–2310.

    Article  PubMed  CAS  Google Scholar 

  18. Krivokapich J, Czernin J, Schelbert HR: Dobutamine positron emission tomography: absolute quantitation of rest and dobutamine myocardial blood flow and correlation with cardiac work and percent diameter stenosis in patients with and without coronary artery disease.J Am Coll Cardiol 1996, 28:565–572.

    Article  PubMed  CAS  Google Scholar 

  19. Krivokapich J, Huang SC, Schelbert HR: Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate. Am J Cardiol 1993, 71:1351–1356.

    Article  PubMed  CAS  Google Scholar 

  20. Czernin J, Sun K, Brunken R, et al.: Effect of acute and long-term smoking on myocardial blood flow and flow reserve. Circulation 1995, 91:2891–2897.

    Article  PubMed  CAS  Google Scholar 

  21. Müller P, Czernin J, Choi Y, et al.: Effect of exercise supplementation during adenosine infusion on hyperemic blood flow and flow reserve. Am Heart J 1994, 128:52–60.

    Article  PubMed  Google Scholar 

  22. Laine H, Nuutila P, Luotolahti M, et al.: Insulin-induced increment of coronary flow reserve is not abolished by dexamethasone in healthy young men. J Am Coll Cardiol 2000, 35:419A.

    Google Scholar 

  23. Sundell J, Nuutila P, Laine H, et al.: Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes 2002, 51:1125–1130.

    Article  PubMed  CAS  Google Scholar 

  24. Di Carli M, Czernin J, Hoh CK, et al.: Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995, 91:1944–1951.

    Article  PubMed  Google Scholar 

  25. Gould KL, Lipscomb K, Hamilton GW: Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974, 33:87–94.

    Article  PubMed  CAS  Google Scholar 

  26. Beanlands RS, Muzik O, Melon P, et al.: Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995, 26:1465–1475.

    Article  PubMed  CAS  Google Scholar 

  27. Uren NG, Melin JA, De Bruyne B, et al.: Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994, 330:1782–1788.

    Article  PubMed  CAS  Google Scholar 

  28. Dayanikli F, Grambow D, Muzik O, et al.: Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994, 90:808–817.

    Article  PubMed  CAS  Google Scholar 

  29. Yokoyama I, Ohtake T, Momomura S, et al.: Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 1996, 94:3232–3238.

    Article  PubMed  CAS  Google Scholar 

  30. Pitkänen OP, Nuutila P, Raitakari OT, et al.: Coronary flow reserve in young men with familial combined hyperlipidemia. Circulation 1999, 99:1678–1684.

    Article  PubMed  Google Scholar 

  31. Reddy KG, Nair RN, Sheehan HM, Hodgson JM: Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 1994, 23:833–843.

    Article  PubMed  CAS  Google Scholar 

  32. Campisi R, Czernin J, Schöder H, et al.: Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 1998, 98:119–125.

    Article  PubMed  CAS  Google Scholar 

  33. Zeiher AM: Endothelial modulation of coronary vasomotor tone in humans. Effects of atherosclerosis and risk factors for coronary artery disease. Arzneimittelforschung 1994, 44:439–442.

    PubMed  CAS  Google Scholar 

  34. Zeiher AM, Drexler H: Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans. Basic Res Cardiol 1991, 86:203–213.

    PubMed  Google Scholar 

  35. Zeiher AM, Drexler H, Wollschlaeger H, et al.: Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989, 14:1181–1190.

    Article  PubMed  CAS  Google Scholar 

  36. Zeiher AM, Drexler H, Wollschlager H, Just H: Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991, 84:1984–1992.

    Article  PubMed  CAS  Google Scholar 

  37. Zeiher AM, Drexler H, Wollschlager H, Just H: Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991, 83:391–401.

    Article  PubMed  CAS  Google Scholar 

  38. Czernin J, Barnard RJ, Sun KT, et al.: Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995, 92:197–204.

    Article  PubMed  CAS  Google Scholar 

  39. Bailer D, Notohamiprodjo G, Gleichmann U, et al.: Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 1999, 99:2871–2875.

    Article  Google Scholar 

  40. Guethlin M, Kasel AM, Coppenrath K, et al.: Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 1999, 99:475–481.

    Article  PubMed  CAS  Google Scholar 

  41. Huggins GS, Pasternak RC, Alpert NM, et al.: Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reserve. Circulation 1998, 98:1291–1296.

    Article  PubMed  CAS  Google Scholar 

  42. Janatuinen T, Laaksonen R, Vesalainen R, et al.: Effect of lipid-lowering therapy with pravastatin on myocardial blood flow in young mildly hypercholesterolemic adults.J Cardiovasc Pharmacol 2001, 38:561–568.

    Article  PubMed  CAS  Google Scholar 

  43. Yokoyama I, Momomura S, Ohtake T, et al.: Improvement of impaired myocardial vasodilatation due to diffuse coronary atherosclerosis in hypercholesterolemics after lipid-lowering therapy. Circulation 1999, 100:117–122.

    Article  PubMed  CAS  Google Scholar 

  44. Yokoyama I, Yonekura K, Inoue Y, et al.: Long-term effect of simvastatin on the improvement of impaired myocardial flow reserve in patients with familial hypercholesterolemia without gender variance.J Nucl Cardiol 2001, 8:445–451.

    Article  PubMed  CAS  Google Scholar 

  45. De Bruyne B, Hersbach F, Pijls NH, et al.: Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 2001, 104:2401–2406.

    Article  PubMed  Google Scholar 

  46. Gould KL, Nakagawa Y, Nakagawa K, et al.: Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 2000, 101:1931–1939.

    Article  PubMed  CAS  Google Scholar 

  47. Hernandez-Pampaloni M, Keng FY, Kudo T, et al.: Abnormal longitudinal, base-to-apex myocardial perfusion gradient by quantitative blood flow measurements in patients with coronary risk factors. Circulation 2001, 104:527–532.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Current Medicine, Inc.

About this chapter

Cite this chapter

Schelbert, H.R., Oxilia-Estigarribia, M.A. (2003). PET Quantitation of Myocardial Blood Flow. In: Atlas of Nuclear Cardiology. Current Medicine Group, London. https://doi.org/10.1007/978-1-4615-6496-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6496-6_5

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4615-6498-0

  • Online ISBN: 978-1-4615-6496-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics