Skip to main content

Experimental Approaches Using Kallikrein Gene Therapy for Hypertension

  • Chapter
Gene Transfer in the Cardiovascular System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 189))

  • 57 Accesses

Abstract

The kallikrein gene family is a set of closely related serine proteinases that exhibit limited proteolysis of specific substrates [1–4]. All mammals studied have two types of kallikreins: plasma kallikrein and tissue kallikrein. They differ in primary structure, physico-chemical properties, immunological properties, substrate specificity, susceptibility to inhibitors, site of synthesis and biological function. Plasma kallikrein which is synthesized in the liver participates in blood coagulationand fibrinolysis in the circulation. Tissue kallikreins which are synthesized in various exocrine and endocrine organs, are involved in the processing of polypeptide hormones and growth factors [5]. Plasma kallikrein cleaves high molecular weight kininogen to produce bradykinin. Tissue kallikrein cleaves human and bovine low molecular weight kininogens to produce lysyl-bradykinin (kallidin) and in the rat it releases bradykinin from kininogen (Figure 1). Kinin binds to its receptorin target tissues and exhibits a broad spectrum of biological effects including: vasodilation, blood pressure reduction, smooth muscle relaxation and contraction, pain induction and inflammation [1,6]. There are two types of kinin receptors, B1 and B2 which differ in pharmacological properties, biological activities and primal) structures [6–11]. The B1 receptor binds weakly to intact kinin but strongly to kinin’s metabolites desArg9- bradykininand des-Arg10-kallidin, which are generated by kininase I. In contrast, the B2 receptor has a greater affinity to intact bradykinin and kallidin than to kinin’s metabolites [10]. The B1 receptor seems to be absent in normal mammalian tissues, but appears in pathological states such as inflammation and trauma while the B2 receptor is widely distributed throughout tissues [10,11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhoola, KD, Figueroa, CD, Worthy, K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992;44:1–80

    PubMed  CAS  Google Scholar 

  2. Murray, SR, Chao, J, Lin, FK, Chao, L. Kallikrein multigene families and the regulation of their expression. J Cardiovasc Pharmacol 1990;15:S7–16

    PubMed  CAS  Google Scholar 

  3. Clements, JA. The glandular kallikrein family of enzymes: tissue-specific expression and hormonal regulation. Endocr Rev 1989;10:393–419

    Article  PubMed  CAS  Google Scholar 

  4. Mac Donald, RJ, Margolius, HS, Erdos, EG. Molecular biology of tissue kallikrein. Biochem J 1988;253:313–321

    CAS  Google Scholar 

  5. Mason, AJ, Evans, BA, Cox, DR, Shine, J, Richards, RI. Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides. Nature 1983;303:300–307

    Article  PubMed  CAS  Google Scholar 

  6. Regoli, D, Barabe, J. Pharmacology of bradykinin and related kinins. Pharmacol Rev 1980;32:1–39

    PubMed  CAS  Google Scholar 

  7. McEachern, AE, Shelton, ER, Bhakta, S, et. al. Expression Cloning of a Rat B2 Bradykinin Receptor. Proc Natl Acad Sci USA 1991;88:7724–7728

    Article  PubMed  CAS  Google Scholar 

  8. Hess, JF, Borkowski, JA, Young, GS, Strader, CD. Ransom, RW. Cloning and Pharmacological Characterization of a Human Bradykinin (BK-2) Receptor. Biochem Biophys Res Commun 1992; 184:260–268

    Article  PubMed  CAS  Google Scholar 

  9. Taylor, L, Ricupero, D, Jean, J-C, Jackson, BA, Navarro, J, Polgar, P. Functional expression of the bradykinin-B2 receptor cDNA in Chinese hamster lung CCL39 fibroblasts. Biochem Biophys Res Commun 1992; 188:786–793

    Article  PubMed  CAS  Google Scholar 

  10. Farmer, SG. Biochemical and molecular pharmacology of kinin receptors. Annu Rev Pharmacol Toxicol 1992;32:511–536

    Article  PubMed  CAS  Google Scholar 

  11. Ma, J-X, Wang, D-Z, Ward, DC, et. al. Structure and Chromosomal Localization of the Gene (BDKRB2) Encoding Human Bradykinin B2 Receptor. Genomics 1994;23:362–369

    Article  PubMed  CAS  Google Scholar 

  12. Chen, YP, Chao, J, Chao, L. Molecular cloning and characterization of two rat renal kallikrein genes. Biochemistry 1988;27:7189–7196

    Article  PubMed  CAS  Google Scholar 

  13. Shai, SY, Woodley-Miller, C, Chao, J, Chao, L. Characterization of genes encoding rat tonin and a kallikrein-like serine protease. Biochemistry 1989;28:5334–5343

    Article  PubMed  CAS  Google Scholar 

  14. Lin, FK, Lin, CH, Chou, CC, et. al. Molecular cloning and sequence analysis of the monkey and human tissue kallikrein genes. Biochim Biophys Acta 1993;1173:325–328

    Article  PubMed  CAS  Google Scholar 

  15. Chao, J, Tillman, DM, Wang, MY, Margolius, HS, Chao, L. Identification of a new tissue-kallikrein-binding protein. Biochem J 1986;239:325–331

    PubMed  CAS  Google Scholar 

  16. Chao, J, Chai, KX, Chen, LM, et. al. Tissue kallikrein-binding protein is a serpin. I. Purification, characterization, and distribution in normotensive and spontaneously hypertensive rats. J Biol Chem 1990;265:16394–16401

    PubMed  CAS  Google Scholar 

  17. Chai, KX, Ma, JX, Murray, SR, Chao, J, Chao, L. Molecular cloning and analysis of the rat kallikrein-binding protein gene. J Biol Chem 1991;266:16029–16036

    PubMed  CAS  Google Scholar 

  18. Chai, KX, Chao, J, Chao, L. Molecular cloning and sequence analysts of the mouse kallikreinbinding protein gene. Biochim Biophys Acta 1991;1129:127–130

    Article  PubMed  CAS  Google Scholar 

  19. Chai, KX, Chen, LM, Chao, J, Chao, L. Kallistatin: a novel human serine proteinase inhibitor. Molecular cloning, tissue distribution, and expression in Escherichia coli. J Biol Chem 1993;268:24498–24505

    PubMed  CAS  Google Scholar 

  20. Chai, KX, Ward, D. C., Chao, J., Chao, L. Molecular Cloning, Sequence Analysis, and Chromosomal Localization of the Human Protease Inhibitor 4 (Kallistatin) Gene (PI4). Genomics 1994;23:370–378

    Article  PubMed  CAS  Google Scholar 

  21. Zhou, GX, Chao, L, Chao, J. Kallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem 1992;267:25873–25880

    PubMed  CAS  Google Scholar 

  22. Abelous, JE, Bardier, E. Les Substances Hypotensive de l’urine Humaine Normale. C R Soc Biol (Paris) 1909;66:511–512

    CAS  Google Scholar 

  23. Frey, EK, Kraut, H. Ein neues Kreislaufhormon und seine Wirkung. Arch Exp Pathol Pharmakol 1928;133:1–56

    Article  CAS  Google Scholar 

  24. Kraut, H, Frey, EK, Bauer, E. Uber ein neues Kreislaufhormon. II. Mittleilung. Hoppe-Seylers Z Physiol Chem 1928;175:97–114

    Article  CAS  Google Scholar 

  25. Frey, EK, Kraut, K, Werle, E. Uber die blutzuckersenkende Wirkung des Kallikreins (Padutins). Klin Wochemchr 1932;11:846–849

    Article  CAS  Google Scholar 

  26. Frey, EK, Kraut, K, Werle, E. Zusammenhange zwischen Herzarbeit und Nierentatigkeit. Arch Clin Chir 1950;142:663

    Google Scholar 

  27. Yang, HYT, Erdös, EG, Levin, Y. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta 1970;214:374–376

    Article  PubMed  CAS  Google Scholar 

  28. Arakawa, K, Maruta, H. Ability of kallikrein to generate angiotensin II-like pressor substance and a proposed ‘kinin-tensin enzyme system’. Nature 1980;288:705–706

    Article  PubMed  CAS  Google Scholar 

  29. Gohlke, P, Linz, W, Schölkens, BA, et. al. Angiotensin-converting enzyme inhibition improves cardiac function. Hypertension 1994;23:411–418.

    Article  PubMed  CAS  Google Scholar 

  30. Gyurko, R, Wielbo, D, Philips, MI. Antisense inhibition of ATI receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regulatory Peptides 1993;49:167–174

    Article  PubMed  CAS  Google Scholar 

  31. Elliot, R, Nuzum, FR. Urinary Excretion of a Depressor Substance (Kallikrein of Frey and Kraut) in Arterial Hypertension. Endocrinology 1934;18:462–474

    Article  CAS  Google Scholar 

  32. Margolius, HS, Geller, R, de Jong, W, Pisano, JJ, Sjoerdsma, A. Altered urinary kallikrein excretion in human hypertension. Lancet 1971;2:1063–1065

    Article  Google Scholar 

  33. Scicli, AG, Carretero, OA. Renal kallikrein-kinin system. Kidney Int 1986;29:120–130

    Article  PubMed  CAS  Google Scholar 

  34. Margolius, HS. Tissue kallikreins and kinins: regulation and roles in hypertensive and diabetic diseases. Annu Rev Pharmacol Toxicol 1989;29:343–364

    Article  PubMed  CAS  Google Scholar 

  35. Zinner, SH, Margolius, HS, Rosner, B, Kass, EH. Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation 1978;58:908–915

    Article  PubMed  CAS  Google Scholar 

  36. Margolius, HS, Horwitz, D, Pisano, JJ, Keiser, HR. Urinary kallikrein excretion in hypertensive man. Relationships to sodium intake and sodium-retaining steroids. Circ Res 1974;35:820–825

    Article  PubMed  CAS  Google Scholar 

  37. Berry, TD, Hasstedt, SJ, Hunt, SC, et. al. A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension 1989;13:3–8

    Article  PubMed  CAS  Google Scholar 

  38. Ader, JL, Pollock, DM, Butterfield, MI. Arendshorst, WJ. Abnormalities in kallikrein excretion in spontaneously hypertensive rats. Am J Physiol 1985;248:F396–403

    PubMed  CAS  Google Scholar 

  39. Favaro, S, Baggio, B, Antonello, A, et. al. Renal kallikrein content of spontaneously hypertensive rats. Clin Sci Mol Med 1975;49:69–71

    PubMed  CAS  Google Scholar 

  40. Margolius, HS, Geller, R, De Jong, W, Pisano, JJ, Sjoerdsma, A. Altered urinary kallikrein excretion in rats with hypertension. Circ Res 1972;30:358–362

    Article  PubMed  CAS  Google Scholar 

  41. Geller, RG, Margolius, HS, Pisano, JJ, Keiser, HR. Urinary kallikrein excretion in spontaneously hypertensive rats. Circ Res 1975;36:103–106

    Article  PubMed  CAS  Google Scholar 

  42. Woodley-Miller, C, Chao, J, Chao, L. Restriction fragment length polymorphisms mapped in spontaneously hypertensive rats using kallikrein probes. J Hypertens 1989;7:865–871

    Article  PubMed  CAS  Google Scholar 

  43. Pravenec, M, Kren, V, Kunes, J, et. al. Cosegregation of blood pressure with a kallikrein gene family polymorphism. Hypertension 1991;17:242–246

    Article  PubMed  CAS  Google Scholar 

  44. Markwardt, F, Sturzebecher, J, Muller, H. Acyl kallikrein: a delivery system for the kininliberating enzyme. Experientia 1984;40:373–374

    Article  PubMed  CAS  Google Scholar 

  45. Overlack, A, Stumpe, KO, Kolloch, R, Ressel, C, Krueck, F. Antihypertensive effect of orally administered glandular kallikrein in essential hypertension. Results of double blind study. Hypertension 1981;3:I18–21

    Article  PubMed  CAS  Google Scholar 

  46. Ogawa, K, Ito, T, Ban, M, Mochizuki, M, Satake, T. Effects of orally administered glandular kallikrein on urinary kallikrein and prostaglandin excretion, plasma immunoreactive prostanoids and platelet aggregation in essential hypertension. Klin Wochemchr 1985;63:332–336

    Article  CAS  Google Scholar 

  47. Bellini, C, Ferri, C, Piccoli, A, et al. The influence of salt sensitivity on the blood pressure response to exogenous kallikrein in essential hypertensive patients. Nephron 1993;65:28–35

    Article  PubMed  CAS  Google Scholar 

  48. Madeddu, P, Manunta, P, Soro, A, et. al. Antihypertensive effect of orally administered pig pancreatic kallikrein in patients with low urinary excretion of kallikrein. Curr Ther Res 1989;46:223–229

    Google Scholar 

  49. Wang, J, Xiong, W, Yang, Z, et. al. Human tissue kallikrein induces hypotension in transgenic mice. Hypertension 1994;23:236–243

    Article  PubMed  CAS  Google Scholar 

  50. Mullins, JJ, Peters, J, Ganten, D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 1990;344:541–544

    Article  PubMed  CAS  Google Scholar 

  51. Ohkubo, H, Kawakami, H, Kakehi, Y, et. al. Generation of transgenic mice with elevated blood pressure by introduction of the rat renin and angiotensinogen genes. Proc Natl Acad Sci U S A 1990,87:5153–5157

    Article  PubMed  CAS  Google Scholar 

  52. Fukamizu, A, Sugimura, K, Takimoto, E, et. al. Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem 1993;268:11617–11621

    PubMed  CAS  Google Scholar 

  53. Steinhelper, ME, Cochrane, KL, Field, LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes [see comments]. Hypertension 1990;16:301–307

    Article  PubMed  CAS  Google Scholar 

  54. Plautz, GE, Yang, ZY, Wu, BY, Gao, X, Huang, L, Nabel, GJ. Immunotherapy of malignancy by in vivo gene transfer into tumors [see comments]. Proc Natl Acad Sci USA 1993;90:4645–4649

    Article  PubMed  CAS  Google Scholar 

  55. Nabel, GJ, Nabel, EG, Yang, ZY, et. al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 1993;90:11307–11311

    Article  PubMed  CAS  Google Scholar 

  56. Mulligan, RC. The basic science of gene therapy. Science 1993;260:926–932

    Article  PubMed  CAS  Google Scholar 

  57. Miller, AD. Human gene therapy comes of age. Nature 1992,357:455–460

    Article  PubMed  CAS  Google Scholar 

  58. Rosenfeld, MA, Yoshimura, K, Trapnell, BC, et. al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 1992;68:143–155

    Article  PubMed  CAS  Google Scholar 

  59. Grossman, M, Raper, SE, Kozarsky, K, et. al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nature Genetics 1994;6:335–341

    Article  PubMed  CAS  Google Scholar 

  60. Wang, C, Chao, L, Chao, J. Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats. J Clin Invest 1995;95:1710–1716.

    Article  PubMed  CAS  Google Scholar 

  61. Xiong, W, Chao, J, Chao, L. Muscle delivery of human tissue kallikrein gene reduces blood pressure in spontaneously hypertensive rats. Hypertension 1995;25[part 2]:715–719

    Article  PubMed  CAS  Google Scholar 

  62. Flotte, TR. Prospects for virus-based gene therapy for cystic fibrosis. J Bioenerg Biomembr 1993;25:37–42

    Article  PubMed  CAS  Google Scholar 

  63. Wilson, JM, Grossman, M, Wu, CH, Chowdhury, NR, Wu, GY, Chowdhury, JR. Hepatocytedirected gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits. J Biol Chem 1992;267:963–967

    PubMed  CAS  Google Scholar 

  64. Wilson, JM, Grossman, M, Cabrera, JA, Wu, CH, Wu, GY. A novel mechanism for achieving transgene persistence in vivo after somatic gene transfer into hepatocytes. J Biol Chem 1992;267:11483–11489

    PubMed  CAS  Google Scholar 

  65. Wu, GY, Wilson, JM, Shalaby, F, Grossman, M, Shafritz, DA, Wu, CH. Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. J Biol Chem 1991,266:14338–14342

    PubMed  CAS  Google Scholar 

  66. Shimamoto, K, Chao, J, Margolius, HS. The radioimmunoassay of human urinary kallikrein and comparisons with kallikrein activity measurements. J Clin Endocrinol Metab 1980;51:840–848

    Article  PubMed  CAS  Google Scholar 

  67. Chao, J, Chao, L, Tillman, DM, Woodley, CM, Margolius, HS. Characterization of monoclonal and polyclonal antibodies to human tissue kallikrein. Hypertension 1985;7:931–937

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chao, J., Chao, L. (1997). Experimental Approaches Using Kallikrein Gene Therapy for Hypertension. In: March, K.L. (eds) Gene Transfer in the Cardiovascular System. Developments in Cardiovascular Medicine, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6277-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6277-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7881-5

  • Online ISBN: 978-1-4615-6277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics