Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 211))

  • 73 Accesses

Abstract

Despite significant advances in its prevention and treatment, coronary artery disease (CAD) remains the leading cause of death in the Western world today. The economic burden of CAD on society is significant. It has been estimated that the annual cost of treating the approximately 6.3 million Americans afflicted with this disease is $56 billion, with CAD accounting for a significant proportion of the total number of work days lost to illness in the United States [1,2]. Conventional treatment for CAD includes medical therapies designed to reduce hypercholesterolemia, prevent disease progression and reduce myocardial oxygen demand; and interventional therapies that restore blood flow to the epicardial coronary vessels, either by angioplasty or bypass surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannel WB. Incidence, prevalence and mortality of coronary artery disease. In Fuster V, Ross R and Topol E (eds). Atherosclerosis and Coronary Artery Disease. Philadelphia, Lippincott; 1996, pp. 13–24.

    Google Scholar 

  2. Centers for Disease Control and Prevention: National Center for Health Statistics, National Vital Statistics and The United States Bureau of the Census. Health, United States 1993, p. 31.

    Google Scholar 

  3. Mirhoseini M, Cayton M. Revascularization of the heart by laser. J Microsurg 1981;2:253–260.

    Article  PubMed  CAS  Google Scholar 

  4. Okada M, Shimizu K, Ikuta H, Horii H, Nakamura K. A new method of myocardial revascularization by laser. J Thorac Cardiovasc Surg 1992;39:1–4.

    Google Scholar 

  5. Cooley DA, Frazier OH, Kadipasaoglu KA, Pehlivanoglu S, Shannon RL, Angelini P. Transmyocardial laser revascularization: anatomic evidence of long-term channel patency. Texas Heart Inst J 1994;21:220–224.

    CAS  Google Scholar 

  6. Zlotnick AY, Ahmad RM, Reul RM, Laurence RG, Aretz HT, Cohn LH. Neovascularization occurs at the site of closed laser channels after transmyocardial laser revascularization. Surg Forum 1996;47:286–287.

    Google Scholar 

  7. Mack CA, Magovern CJ, Hahn RT, Sanborn T, Ko W, Isom OW, Rosengart TK. Channel patency and neovascularization following transmyocardial revascularization utilizing an excimer laser: results and comparisons to non-lased channels. Circulation 1996;94(Suppl. 1):I-294. (abstract)

    Google Scholar 

  8. Folkman J, Klagsbrun M. A Family of Angiogenic Peptides. Nature 1987;329: 671–672.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman J, Haudenschild C. Angiogenesis in vitro. Nature 1980;288:551–556.

    Article  PubMed  CAS  Google Scholar 

  10. Dumont DJ, Fong G-H, Puri MC, Gradwohl G, Alitalo D, Breitman ML. Vascularization of the mouse embryo: a study of flk-1, tek, tie and vascular endothelial growth factor expression during development. Dev Dyn 1995;203:80–92.

    Article  PubMed  CAS  Google Scholar 

  11. Gilbert SF. Developmental Biology, 3rd ed. Sunderland, MA. Sinauer Associates, 1991:891.

    Google Scholar 

  12. Schaper W, Ito W. Molecular Mechanisms of Coronary Collateral Vessel Growth. Circ Res 1996;79:911–919.

    Article  PubMed  CAS  Google Scholar 

  13. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner J. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  14. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med 1995; 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  15. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931–10934.

    PubMed  CAS  Google Scholar 

  16. Klagsbrun M, Folkman J. Angiogenesis. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors II. 1990. Springer, Berlin, Heidelberg, New York, pp549–574.

    Google Scholar 

  17. Montesano R. 1992 Mack Forster Award Lecture. Review. Regulation of angiogenesis in vitro. Eur J Clin Invest 1992;22:504–515.

    Article  PubMed  CAS  Google Scholar 

  18. Risau W. Angiogenic growth factors. Prog Growth Factor Res 1990;2:71–79.

    Article  PubMed  CAS  Google Scholar 

  19. Weinstat-Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J 1994;8:401–407.

    PubMed  CAS  Google Scholar 

  20. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133:275–288.

    Article  PubMed  CAS  Google Scholar 

  21. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biologic functions of fibroblast growth factor. Endocrine Rev 1987;8:95–114.

    Article  CAS  Google Scholar 

  22. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Ann Rev Biochem 1989;58:575–606.

    Article  PubMed  CAS  Google Scholar 

  23. Brindle NPJ. Growth factors in endothelial regeneration. Cardiovasc Res 1993;27:1162–1172.

    Article  PubMed  CAS  Google Scholar 

  24. Baird A, Bohlen P. Fibroblast Growth Factors. In; Sporn MB, Roberts AD (eds) Peptide Growth Factors and Their Receptors I. 1990 Springer, Berlin Heidelberg New York, pp369–418.

    Chapter  Google Scholar 

  25. Kandel J, Bossy-Wentzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991;66:1095–1104.

    Article  PubMed  CAS  Google Scholar 

  26. Jaye M, Howk R, Burgess W, Ricca GA, Chiu IM, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome location. Science 1986;233:541–545.

    Article  PubMed  CAS  Google Scholar 

  27. Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 1986;233:545–548.

    Article  PubMed  CAS  Google Scholar 

  28. Houssaint E, Blanquet P, Champion-Arnoud P, Gesnel MC, Torriglia A, Courtois Y, Breathnach R. Related fibroblast growth factor receptor genes exist in the human genome. Proc Natl Acad Sci USA 1990;87:8180–8184.

    Article  PubMed  CAS  Google Scholar 

  29. Johnson D, Lee P, Lu J, Williams L. Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol 1990; 10:4728–4736.

    PubMed  CAS  Google Scholar 

  30. Moscatelli D. Metabolism of receptor-bound and matrix-bound basic fibroblast growth by bovine capillary endothelial cells. J Cell Biol 1988; 107:753–759.

    Article  PubMed  CAS  Google Scholar 

  31. Yayon A, Klagsbrun M, Esko J, Leder P, Ornitz D.Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991;64:841–848.

    Article  PubMed  CAS  Google Scholar 

  32. Brown KJ, Hendry IA, Parish CR. Acidic and basic fibroblast growth factor bind with differing affinity to the same heparan sulfate proteoglycan on BALB/c 3T3 cells: implications for potentiation of growth factor action by heparin. J Cell Biochem 1995;58:6–14.

    Article  PubMed  CAS  Google Scholar 

  33. Reich-Slotky R, Bonneh-Barkay D, Shaoul E, Bluma B, Svahn CM, Ron D. Differential effect of cell-associated heparan sulfates on the binding of keratinocyte growth factor (KGF) and acidic fibroblast growth factor to the KGF receptor. J Biol Chem 1994;269:32279–32285.

    PubMed  CAS  Google Scholar 

  34. Gospodarowicz D, Abraham J, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci USA 1989;86:7311–7315.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851–858.

    Article  PubMed  CAS  Google Scholar 

  36. Ferrara N, Houck K, Jakeman L, Winer J, Leung D. The vascular endothelial growth factor family of polypeptides. J Cell Biochem 1991;47:211–218.

    Article  PubMed  CAS  Google Scholar 

  37. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (fit) closely related to the fms family. Oncogene 1990;5:519–524.

    PubMed  CAS  Google Scholar 

  38. Terman B, Dougher-Vermazen M, Carrion M, Dimitrov D, Armellino D, Gospodarowicz D, Bohlen P. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor. Biochem Biophys Res Commun 1992;187:1579–1586.

    Article  PubMed  CAS  Google Scholar 

  39. Neufeld G, Tessler S, Gitay-Goren H, Cohen T, Levi B-Z. Vascular endothelial growth factor and its receptors. Prog Growth Factor Res 1994;5:89–97.

    Article  PubMed  CAS  Google Scholar 

  40. Leung D, Cachianes G, Kuang W-J, Goeddel D, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  41. Tischer E, Gospodarowicz D, Mitchell R, Silva M, Schilling J, Lau K, Crisp T, Fiddes JC, Abraham JA. Vascular endothelial growth factor: a new member of the platelet-derived growth factor gene family. Biochem Biophys Res Commun 1989:165:1198–1206.

    Article  PubMed  CAS  Google Scholar 

  42. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991;5:1806–1814.

    Article  PubMed  CAS  Google Scholar 

  43. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 1992;267:26031–26037.

    PubMed  CAS  Google Scholar 

  44. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes J, Abraham J. The Human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991;266:11947–11954.

    PubMed  CAS  Google Scholar 

  45. Park J, Keller G-A, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Chem 1993;4:1317–1326.

    CAS  Google Scholar 

  46. Takeshita S, Yukio T, Thierry C, Takayuki A, Bauters C, Symes J, Ferrara N, Isner J. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab Invest 1996;75:487–501.

    PubMed  CAS  Google Scholar 

  47. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991;64:327–336.

    Article  PubMed  CAS  Google Scholar 

  48. Folkman J. 11th Congress of Thrombosis and Haemostasis (Verstraete M, Vermylen J, Lignen R, Arnout J, eds) pp583–596, Leuven University Press, Leuven.

    Google Scholar 

  49. Peacock DJ, Banquerigo ML, Brahn E. Angiogenesis inhibition suppresses collagen arthritis. J Exp Med 1992;175:1135–1138.

    Article  PubMed  CAS  Google Scholar 

  50. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989;339:58–61.

    Article  PubMed  CAS  Google Scholar 

  51. Weidner N, Semple J, Welch W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive breast carcinoma. N Engl J Med 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  52. Folkman J. Angiogenesis and breast cancer. J Clin Oncol 1994;12:441–443.

    PubMed  CAS  Google Scholar 

  53. Sharma HS, Sassen L, Knoll R, Verdouw PD. Myocardial expression of vascular endothelial growth factor: enhanced transcription during ischemia and reperfusion. Circulation 1992;86(suppl I):I-1168. (abstract)

    Google Scholar 

  54. Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 1994;28:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  55. Waltenberger J, Mayr U, Pentz S, Hombach V. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 1996;94:1647–1654.

    Article  PubMed  CAS  Google Scholar 

  56. Brogi E, Schatteman G, Wu T, Kim E, Varticovski L, Keyt B, Isner J. Hypoxiainduced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest. 1996;97:469–476.

    Article  PubMed  CAS  Google Scholar 

  57. Li J, Brown L, Hibberd M, Grossman J, Morgan J, Simons M. VEGF, flk-I, and flt-I expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 1996;270:H1803–H1811.

    PubMed  CAS  Google Scholar 

  58. Ikeda E, Achen MG, Breier G, Risau W. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 1995;270:19761–19766.

    Article  PubMed  CAS  Google Scholar 

  59. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein J, et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995;92:4606–4610.

    Article  PubMed  CAS  Google Scholar 

  60. Rosengart T, Duenas M, Winkles J, Krieger K, Isom OW. Ischemia is associated with increased expression of the angiogenic protein acidic fibroblast growth factor: implications for ‘biologic’ revascularization. Surg Forum 1994;45:392–395.

    Google Scholar 

  61. Gajdusek CM, Carbon S. Injury induced release of basic fibroblast growth factor from bovine aortic endothelial cells. J Cell Physiol 1989; 139:570–579.

    Article  PubMed  CAS  Google Scholar 

  62. Saksela O, Rifkin DB. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 1990; 110:767–775.

    Article  PubMed  CAS  Google Scholar 

  63. Ishai-Michaeli R, Eldor A, Vlodavsky I. Heparanase activity expressed by platelets, neutrophils and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul 1990; 1:833–842.

    PubMed  CAS  Google Scholar 

  64. Klagsbrun M, D’Amore PA. Regulators of angiogenesis. Ann Rev Physiol 1991; 53:217–239.

    Article  CAS  Google Scholar 

  65. O’Reilly MA, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79:315–328.

    Article  PubMed  Google Scholar 

  66. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845.

    Article  PubMed  CAS  Google Scholar 

  67. Hashimoto E, Ogita T, Nakaoka T, Matsuoka R, Takao A, Kira Y. Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am J Physiol 1994;267:H1948–H1954.

    PubMed  CAS  Google Scholar 

  68. Brogi E, Wu T, Namiki A, Isner JM. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 1994;90:649–652.

    Article  PubMed  CAS  Google Scholar 

  69. Sellke F, Li J, Stamler A, Lopez J, Thomas K, Simons M. Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia. Surgery 1996; 120:182–188.

    Article  PubMed  CAS  Google Scholar 

  70. Lazarous DF, Shou M, Scheinowitz H, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EF. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 1996; 94: 1074–1082.

    Article  PubMed  CAS  Google Scholar 

  71. Sellke FW, Wang SY, Friedman M, Harada K, Edelman ER, Grossman W, Simons M. Basic FGF enhances endothelium-dependent relaxation of the collateralperfused coronary microcirculation. Am J Physiol 1994;267:H1303–H1311.

    PubMed  CAS  Google Scholar 

  72. Horrigan M, Maclsaac A, Nicolini F, Vince D, Lee P, Ellis S, Topol E. Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 1996;94:1927–1933.

    Article  PubMed  CAS  Google Scholar 

  73. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S, Robison WG Jr., Stiber JA, Correa R, Epstein SE, et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 1995;91:145–153.

    Article  PubMed  CAS  Google Scholar 

  74. Unger E, Banai S, Shou M, Lazarous D, Jaklitsch M, Scheinowitz M, Correa R, Klingbeil C, Epstein S. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994;266:H1588–H1595.

    PubMed  CAS  Google Scholar 

  75. Harada K, Grossman W, Friedman M, Edelman E, Prasad P, Keighley C, Manning W, Sellke F, Simons M. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 1994;94:623–630.

    Article  PubMed  CAS  Google Scholar 

  76. Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R, Epstein SE, Unger EF. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res 1991;69:76–85.

    Article  PubMed  CAS  Google Scholar 

  77. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992;257:1401–1403.

    Article  PubMed  CAS  Google Scholar 

  78. Hariawala M, Horowitz J, Esakof D, Sherrif D, Walter D, Keyt B, Isner J, Symes J. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res 1996;63:77–82.

    Article  PubMed  CAS  Google Scholar 

  79. Harada K, Friedman M, Lopez JJ, Wang SY, Li J, Prasad PV, Pearlman JD, Edelman ER, Selke FW, Simons M. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 1996;270:H1791–H1802.

    PubMed  CAS  Google Scholar 

  80. Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, Friedman M, Sellke FW, Simons M. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nature Med 1995;1: 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  81. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994;89: 2183–2189.

    Article  PubMed  CAS  Google Scholar 

  82. Magovern CJ, Mack CA, Zhang J, Rosengart TK, Isom OW, Crystal RG. Regional angiogenesis induced in non-ischemic tissue by an adenoviral vector expressing vascular endothelial growth factor. Hum Gene Ther 1997;8:215–227.

    Article  PubMed  CAS  Google Scholar 

  83. Muhlhauser J, Pili R, Merril MJ, Maeda H, Passaniti A, Crystal RG, Capogrossi MC. In vivo angiogenesis induced by recombinant adenovirus vectors coding either for secreted or non-secreted forms of acidic fibroblast growth factor. Hum Gene Ther 1995;6:1457–1465.

    Article  PubMed  CAS  Google Scholar 

  84. Mühlhauser J, Merrill MJ, Pili R, Maeda H, Bacic M, Bewig B, Passaniti A, Edwards NA, Crystal RG, Capogrossi MC. VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo. Cire Res 1995;77: 1077–1086.

    Article  Google Scholar 

  85. Mesri EA, Federoff HJ, Brownlee M. Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice. Circ Res 1995;76:161–167.

    Article  PubMed  CAS  Google Scholar 

  86. Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, Horowitz JR, Symes JF, Isner JF. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996;94:3281–3290.

    Article  PubMed  CAS  Google Scholar 

  87. Giordano FJ, Ping P, Mckirnan MD, Nozaki S, DeMaria AN, Dillmann WH, Mathieu-Costello O, Hammond HK. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Med 1996;2:534–539.

    Article  PubMed  CAS  Google Scholar 

  88. Miller AD. Human gene therapy comes of age. Nature 1992;357:455–460.

    Article  PubMed  CAS  Google Scholar 

  89. Anderson WF. Human gene therapy. Science 1992;256:808–813.

    Article  PubMed  CAS  Google Scholar 

  90. Mulligan RC. The basic science of gene therapy. Science 1993;260:926–932.

    Article  PubMed  CAS  Google Scholar 

  91. Human gene marker/therapy clinical protocols. Hum Gene Ther 1996;7:567–586.

    Article  Google Scholar 

  92. Isner JM. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Human Gene Ther 1996;7:959–988.

    Article  CAS  Google Scholar 

  93. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348:370–374.

    Article  PubMed  CAS  Google Scholar 

  94. Zack R. Development and proliferation capacity of cardiac muscle cells. Circ Res 1974; 34-35(suppl II):II-17.

    Google Scholar 

  95. Wantanabe AM, Green FJ, Farmer BB. Preparation and use of cardiac myocytes in experimental cardiology. In: The Heart and Cardiovascular System. Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds. New York: 1988; Raven Press.

    Google Scholar 

  96. Crystal RG. Transfer of genes to humans: Early lessons and obstacles to success. Science 1995;270: 404–410.

    Article  PubMed  CAS  Google Scholar 

  97. Lin H, Parmacek MS, Morle G, Boiling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 1990;82: 2217–2221.

    Article  PubMed  CAS  Google Scholar 

  98. Guzman R.T, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 1993;73:12202–21207.

    Article  Google Scholar 

  99. French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994;90:2414–2424.

    Article  PubMed  CAS  Google Scholar 

  100. Nicolau C, LePape A, Soriano P, Fargette F, Juhel MF. In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci USA 1983;80:1068–1072.

    Article  PubMed  CAS  Google Scholar 

  101. Horwitz MS. Adenoviruses. In: Fields Virology. Fields BN, Knipe DM, Howley PM, eds. Philadelphia: 1996, Lippincott-Raven Publishers, pp 2149–2171.

    Google Scholar 

  102. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977;36:59–74.

    Article  PubMed  CAS  Google Scholar 

  103. Graham FL. Manipulation of adenovirus vectors. In: Methods in Molecular Biology. Murray EJ (ed). Clifton: 1991, The Humana Press, pp 109–128.

    Google Scholar 

  104. Ali M, Lemoine NR, Ring CJ. The use of DNA viruses as vectors for gene therapy. Gene Ther 1994; 1:367–384.

    PubMed  CAS  Google Scholar 

  105. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy. Proc Natl Acad Sci 1994;91:4407–4411.

    Article  PubMed  CAS  Google Scholar 

  106. Yang Y, Li Q, Ertl HCJ, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995;69:2004–2015.

    PubMed  CAS  Google Scholar 

  107. Yang Y, Joos KU, Su Q, Ertl HCJ, Wilson JM. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther 1996;3:137–144.

    PubMed  Google Scholar 

  108. Mack CA, Song WR, Carpenter HC, Wickham T, Kovesdi I, Harvey BG, Magovern CJ, Isom OW, Rosengart TK, Falck-Pedersen E, Hackett NR, Crystal RG, Mastrangeli A. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Human Gene Ther 1997;8:99–109.

    Article  CAS  Google Scholar 

  109. Quinones MJ, Leor J, Kloner RA, Ito M, Patterson M, Witke WF, Kedes L. Avoidance of immune response prolongs expression of genes delivered to the adult rat myocardium by replication-defective adenovirus. Circulation 1996;94:1394–1401.

    Article  PubMed  CAS  Google Scholar 

  110. Kass-Eisler A, Leinwand L, Gall J, Bloom B, Falck-Pedersen E. Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther 1996;3:154–162.

    PubMed  CAS  Google Scholar 

  111. Mastrangeli A, Harvey BG, Yao J, Wolf G, Kovesdi I, Crystal RG, Falck-Pedersen E. ‘Sero-switch’ adenovirus-mediated in vivo gene transfer: circumvention of antiadenovirus humoral immune defenses against repeat administration by changing the adenovirus serotype. Human Gene Ther 1996;7:79–87.

    Article  CAS  Google Scholar 

  112. Gilgenkrantz H, Duboc D, Juillard V, Couton D, Pavirani A, Guillet JG, Briand P, Khan A. Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: role of the immune response. Human Gene Ther 1995;6:1265–1274.

    Article  CAS  Google Scholar 

  113. Kay MA, Holterman AX, Meuse L, Gown A, Och HD, Linsley PS, Wilson CB. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA41g administration. Nature Genet 1995;11:191–197.

    Article  PubMed  CAS  Google Scholar 

  114. Yang Y, Nunes FA, Berencsi K, Gonczol E, Engelhardt JF, Wilson JM. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genet 1994;7:362–369.

    Article  PubMed  CAS  Google Scholar 

  115. Yang Y, Greenough K, Wilson JM. Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver. Gene Ther 1996;3:412–420.

    PubMed  CAS  Google Scholar 

  116. Coffin RS, Howard MK, Cumming DVE, Dollery CM, McEwan J, Yellon DM, Marber MS, MacLean AR, Brown SM, Latchman DS. Gene delivery to the heart in vivo and to cardiac myocytes and smooth muscle cells in vitro using herpes virus vectors. Gene Ther 1996;3:560–566.

    PubMed  CAS  Google Scholar 

  117. Glorioso JC, DeLuca NA, Fink DJ. Development and application of herpes simplex virus vectors for human gene therapy. Annu Rev Microbiol 1995;49: 675–710.

    Article  PubMed  CAS  Google Scholar 

  118. Kaplitt MG, Xiao X, Samulski RJ, Li J, Ojamaa K, Klein IL, Makimura H, Kaplitt MJ, Strumpf RK, Diethrich EB. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg 1996;62:1669–1676.

    Article  PubMed  CAS  Google Scholar 

  119. Lebkowski JS, McNally MM, Okarma TB, Lerch LB. Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol Cell Biol 1988;8:3988–3996.

    PubMed  CAS  Google Scholar 

  120. Samulski RJ, Chang LS, Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 1987;61:3096–3101.

    PubMed  CAS  Google Scholar 

  121. Samulski RJ, Chang LS, Shenk T. Helper-free stocks of adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989;63:3822–3828.

    PubMed  CAS  Google Scholar 

  122. Kotin RM. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Human Gene Ther 1994;5:793–801.

    Article  CAS  Google Scholar 

  123. Flotte TR, Carter BJ. Adeno-associated virus vectors for gene therapy. Gene Ther 1995;2:357–362.

    PubMed  CAS  Google Scholar 

  124. Magovern CJ, Mack CA, Zhang J, Hahn RT, Ko W, Isom OW, Crystal RG, Rosengart TK. Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector. Ann Thorac Surg 1996;62:425–434.

    Article  PubMed  CAS  Google Scholar 

  125. Muhlhauser J, Jones M, Yamada I, Cirielli C, Lemarchand P, Gloe TR, Bewig B, Signoretti S, Crystal RG, Capogrossi MC. Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Therapy 1996;3:145–153.

    PubMed  CAS  Google Scholar 

  126. von Harsdorf R, Schott RJ, Shen YT, Vatner SF, Mahdavi V, Nadal-Ginard B. Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circ Res 1993;72:688–695.

    Article  Google Scholar 

  127. Gal D, Weir L, Leclerc G, Pickering JG, Hogan J, Isner JM. Direct myocardial transfection in two animal models. Evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest 1993;68:18–25.

    PubMed  CAS  Google Scholar 

  128. Kass-Eisler A, Falck-Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA, Cipriani L, Leinwand LA. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci USA 1993;90:11498–11502.

    Article  PubMed  CAS  Google Scholar 

  129. Li JJ, Ueno H, Pan Y, Tomita H, Yamamoto H, Kanegae Y, Saito I, Takeshita A. Percutaneous transluminal gene transfer into canine myocardium in vivo by replication-defective adenovirus. Cardiovasc Res 1995;30:97–105.

    PubMed  CAS  Google Scholar 

  130. Barr E, Carroll J, Kalynych AM, Tripathy SK, Kozarsky K, Wilson JM. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther 1994; 1:51–58.

    PubMed  CAS  Google Scholar 

  131. Gojo S, Niwaya K, Yoshida Y, Kawachi K, Kitamura S. Ex vivo adenovirus mediated gene transfer into transplanted hearts. J Heart Lung Trans 1996; 15:S63.

    Google Scholar 

  132. Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 1992;90:626–630.

    Article  PubMed  CAS  Google Scholar 

  133. Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA. Hormonal modulation of a gene injected into rat heart in vivo. Proc Natl Acad Sci USA 1991;88:4138–4142.

    Article  PubMed  CAS  Google Scholar 

  134. Buttrick PM, Kass A, Kitsis RN, Kaplan ML, Leinwand LA. Behavior of genes directly injected into the rat heart in vivo. Circ Res 1992;70:193–198.

    Article  PubMed  CAS  Google Scholar 

  135. Fishman GI, Kaplan ML, Buttrick PM. Tetracycline-regulated cardiac gene expression in vivo. J Clin Invest 1994;93:1864–1868.

    Article  PubMed  CAS  Google Scholar 

  136. Prentice H, Kloner RA, Prigozy T, Christensen T, Newman L, Li Y, Kedes L. Tissue restricted gene expression assayed by direct DNA injection into cardiac and skeletal muscle. J Mol Cell Cardiol 1994;26:1393–1401.

    Article  PubMed  CAS  Google Scholar 

  137. Barr E, Lin H, Boiling S, Engelmann GL, Leiden JM. Induction of angiogenesis following in vivo gene transfer into the myocardium. Circulation 1991;84 Supplement:II-420

    Google Scholar 

  138. Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A, Devereux RB, Goldsmith SJ, Christian TF, Sanborn TA, Kovesdi I, Isom OW, Crystal RG, Rosengart TK. Myocardial perfusion and function following adenovirus-mediated transfer of the VEGF121 cDNA to the ischemic porcine myocardium. Abstract. American Association for Thoracic Surgery, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Whittaker Ph.D. George S. Abela M.D.

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mack, C.A., Patel, S.R., Magovern, C.J., Crystal, R.G., Rosengart, T.K. (1999). Myocardial Angiogenesis: Biology and Therapy. In: Whittaker, P., Abela, G.S. (eds) Direct Myocardial Revascularization: History, Methodology, Technology. Developments in Cardiovascular Medicine, vol 211. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5069-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5069-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7305-6

  • Online ISBN: 978-1-4615-5069-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics