Skip to main content

Nitric Oxide and Endothelin in the Developing Pulmonary Circulation: Physiologic and Clinical Implications

  • Chapter
Lung Development

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

Within minutes after birth, pulmonary vascular resistance (PVR) rapidly falls from high fetal levels. This allows pulmonary blood flow to increase nearly tenfold and enables the lung to assume its postnatal role in gas exchange. Failure of the pulmonary circulation to successfully achieve and sustain this decrease in PVR causes severe hypoxemia in many neonatal cardiopulmonary disorders, which are referred to as the syndrome persistent pulmonary hypertension of the newborn (PPHN). Mechanisms leading to severe pulmonary hypertension after birth are poorly understood, but they include altered pulmonary vascular reactivity and structure. Persistent pulmonary hypertension of the newborn is a major clinical problem, contributing substantially to morbidity and mortality in both full-term and premature neonates. An understanding of basic mechanisms that underlie normal development of the pulmonary circulation in utero and that contribute to the marked pulmonary vasodilation during the normal transition at birth may provide insight into PPHN and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abman, S.H. and F.J. Accurso. Acute effects of partial compression of the ductus arteriosus on the fetal pulmonary circulation. Am. J. Physiol. 257: H626–634, 1989.

    PubMed  CAS  Google Scholar 

  2. Abman, S.H. and F.J. Accurso. Sustained fetal pulmonary vasodilation during prolonged infusion of atrial natriuretic factor and 8-bromo-guanosine monophosphate. Am. J. Physiol. 260: H183–H192, 1991.

    PubMed  CAS  Google Scholar 

  3. Abman, S.H., B.A. Chatfield, S.L. Hall, and I.F. McMurtry. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am. J. Physiol. 259: H1921–H1927, 1990.

    PubMed  CAS  Google Scholar 

  4. Abman, S.H., B.A. Chatfield, D.M. Rodman, S.L. Hall, and I.F. McMurtry. Maturation-related changes in endothelium-dependent relaxation of ovine pulmonary arteries. Am. J. Physiol. 260: L280–L285, 1991.

    PubMed  CAS  Google Scholar 

  5. Abman, S.H., J.P. Kinsella, M.S. Schaffer, and R.B. Wilkening. Inhaled nitric oxide therapy in a premature newborn with severe respiratory distress and pulmonary hypertension. Pediatrics 92: 606–609, 1993.

    PubMed  CAS  Google Scholar 

  6. Abman, S.H., P.F. Shanley, and F.J. Accurso. Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J. Clin. Invest. 83: 1849–1858, 1989.

    PubMed  CAS  Google Scholar 

  7. Accurso, F.J., B. Alpert, R.B. Wilkening, R.G. Petersen, and G. Meschia. Time-dependent response of fetal pulmonary blood flow to an increase in fetal oxygen tension. Respir. Physiol. 63: 43–52, 1986.

    PubMed  CAS  Google Scholar 

  8. Allen, K. and S.G. Haworth. Impaired adaptation of intrapulmonary arteries to extrauterine life in newborn pigs exposed to hypoxia. An ultrastructural study. Fed. Proc. 45: 879, 1986.

    Google Scholar 

  9. Allen, S.W., B.A. Chatfield, S.L. Koppenhafer, M.S. Schaffer, R.R. Wolfe, and S.H. Abman. Circulating immunoreactive ET-1 in children with pulmonary hypertension: association with acute hypoxic pulmonary vasoreactivity. Am. Rev. Respir. Dis. 148: 519–522, 1993.

    PubMed  CAS  Google Scholar 

  10. Archer, S.L., J.M.C. Huang, V. Hampl, D.F. Nelson, P.J. Shultz, and E.K. Weir. NO and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91: 7583–7587, 1994.

    PubMed  CAS  Google Scholar 

  11. Arnal, J.F., J. Yamin, S. Dockery, and D.G. Harrison. Regulation of endothelial NO synthase mRNA, protein, and activity during cell growth. Am. J. Physiol. 267: C1381–C1388, 1994.

    PubMed  CAS  Google Scholar 

  12. Beavo, J.A. and D.H. Reifsnyder. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol. Sci. 11: 150–155, 1990.

    PubMed  CAS  Google Scholar 

  13. Belik, J. and N.L. Stephens. Developmental differences in vascular smooth muscle mechanics in pulmonary and systemic circulations. J. Appl. Physiol. 74: 682–687, 1993.

    PubMed  CAS  Google Scholar 

  14. Bolotina, V.M., S. Najibi, J.J. Palacino, P.H. Pagano, and R.A. Cohen. NO directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853, 1994.

    PubMed  CAS  Google Scholar 

  15. Bonvallet, S.T., M.A. Zamora, K. Hasunuma, K. Sato, N. Hanasato, D. Anderson, K. Sato, and T.J. Stelzner. BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am. J. Physiol. 266: H1327–H331, 1994.

    PubMed  CAS  Google Scholar 

  16. Boulanger, C. and T.F. Luscher. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J. Clin. Invest. 85: 87–90, 1990.

    Google Scholar 

  17. Bustamante, S.A., Y. Pang, S. Romero, M.R. Pierce, C.A. Voelker, J.H. Thompson, M. Sandoval, X. Liu, and M.J. Miller. Inducible NOS and the regulation of central vessel caliber in the fetal rat. Circulation 1948–1953, 1996.

    Google Scholar 

  18. Braner, D.A., J.R. Fineman, R. Chang, and S.J. Soifer. MandB 22948, a cGMP phosphodiesterase inhibitor, is a pulmonary vasodilator in lambs. Am. J. Physiol. 764: H252–H258, 1993.

    Google Scholar 

  19. Cassin, S. Role of prostaglandins, thromboxanes and leukotrienes in the control of the pulmonary circulation in the fetus and newborn. Semin. Perinatol. 11: 53–63, 1987.

    PubMed  CAS  Google Scholar 

  20. Cassin, S., G.S. Dawes, J.C. Mott, B.B. Ross, and L.B. Strang. Vascular resistance of the foetal and newly ventilated lung of the lamb. J. Physiol. Lond. 171: 61–79, 1964.

    PubMed  CAS  Google Scholar 

  21. Cassin, S., T. Kristova, T. Davis, P. Kadowitz, and G. Gause. Tone-dependent responses to endothelin in the isolated perfused fetal sheep pulmonary circulation in situ. J. Appl. Physiol. 70: 1228–1234, 1991.

    PubMed  CAS  Google Scholar 

  22. Chatfield, B.A., I.F. McMurtry, S.L. Hall, and S.H. Abman. Hemodynamic effects of endothelin-1 on the ovine fetal pulmonary circulation. Am. J. Physiol. 261: R182–R187, 1991.

    PubMed  CAS  Google Scholar 

  23. Cohen, A.H., K. Hanson, K. Morris, B. Fouty, I.F. McMurtry, W. Clarke, and D.M. Rodman. Inhibition of cGMP-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J. Clin. Invest. 97: 172–179, 1996.

    PubMed  CAS  Google Scholar 

  24. Cornfield, D.N., B.A. Chatfield, J.A. McQueston, I.F. McMurtry, and S.H. Abman. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in the ovine fetus. Am. J. Physiol. 262: H1474–H1481, 1992.

    PubMed  CAS  Google Scholar 

  25. Cornfield, D.N., J.A. McQueston, I.F. McMurtry, D.M. Rodman, and S.H. Abman. Role of ATPsensitive K+channels in ovine fetal pulmonary vascular tone. Am. J. Physiol. 263: H1363–H1368, 1992.

    PubMed  CAS  Google Scholar 

  26. Cornfield, D.N., H.L. Reeves, S. Tolarova, E.K. Weir, and S.L. Archer. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc. Natl. Acad. Sci. USA 93: 8089–8094, 1996.

    PubMed  CAS  Google Scholar 

  27. Davidson, D. and A. Eldemerdash. Endothelium-derived relaxing factor: evidence that it regulates pulmonary vascular resistance in the isolated newborn guinea pig lung. Pediatr. Res. 29: 538–542, 1991.

    PubMed  CAS  Google Scholar 

  28. Dubin, D., R.E. Pratt, J.P. Cooke, and V.J. Dzau. Endothelin, a potent vasoconstrictor, is a vascular smooth muscle mitogen. J. Vasc. Med. Biol. 1: 150–154, 1989.

    Google Scholar 

  29. Fineman, J.R., J. Wong, F.C. Morin, L.M. Wild, and S.J. Soifer. Chronic NO inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J. Clin. Invest. 93: 9675–9683, 1994.

    Google Scholar 

  30. Flowers, M.A., Y. Wang, R.J. Stewart, B. Patel, and P.A. Marsden. Reciprocal regulation of endothelin-1 and endothelial NOS in proliferating endothelial cells. Am. J. Physiol. 269: H1988–H1997, 1995.

    PubMed  CAS  Google Scholar 

  31. Fratacci, M.D., C.G. Frostell, T.Y. Chen, and W.M. Zapol. Inhaled NO: a selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology 75: 990–999, 1991.

    PubMed  CAS  Google Scholar 

  32. Garg, U.C. and A. Hassid. NO-generating vasodilators and 8-bromo-cGMP inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle ceils. J. Clin. Invest. 83: 1774–1777, 1989.

    PubMed  CAS  Google Scholar 

  33. Geggel, R.L. and L.M. Reid. The structural basis of persistent pulmonary hypertension of the newborn. Clin. Perinatol. 3: 525–549, 1984.

    Google Scholar 

  34. Giaid, A. and D. Saleh. Reduced expression of endothelial NO synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 333: 214–221, 1995.

    PubMed  CAS  Google Scholar 

  35. Giaid, A., M. Yanagasawa, D. Langleben, R.P. Michel, R. Levy, H. Shennib, S. Kimura, T. Masaki, W.P. Duguid, and D.J. Stewart. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328: 1732–1739, 1993.

    PubMed  CAS  Google Scholar 

  36. Goldberg, S.J., R.A. Levy, and B. Siassi. Effects of maternal hypoxia and hyperoxia upon the neonatal pulmonary vasculature. Pediatrics 48: 528–533, 1971.

    PubMed  CAS  Google Scholar 

  37. Halbower, A.C., R.M. Tuder, W.A. Franklin, J.S. Pollock, U. Forstermann, and S.H. Abman. Maturation-related changes in endothelial NO synthase immunolocalization in the developing ovine lung. Am. J. Physiol. 267: L585–L591, 1994.

    PubMed  CAS  Google Scholar 

  38. Hanson, K.A., J.A. Beavo, S.H. Abman, and W.R. Clarke. Chronic intrauterine pulmonary hypertension increases lung cGMP hydrolytic activity and decreases cGMP kinase content in the ovine fetus [Abstract]. Am. J. Respir. Crit. Care Med. 155: A632, 1997.

    Google Scholar 

  39. Hanson, K.A., S. Uezono, J. Beavo, and W.R. Clarke. Developmental regulation of pulmonary cGMP phosphodiesterase activity in fetal and maternal lung [Abstract]. Am. J. Respir. Crit. Care Med. 151: A437, 1995.

    Google Scholar 

  40. Heymann, M.A. and S.J. Soifer. Control of fetal and neonatal pulmonary circulation. In: Pulmonary vascular physiology and pathophysiology, edited by E.K. Weir and J.T. Reeves. New York: Marcel Dekker, 1989, p. 33–50.

    Google Scholar 

  41. Hirata, Y., Y.H. Yoshima, S. Eguchi, K. Kanno, T. Imai, K. Ohta, and F. Marumo. ET receptor subtype B mediates synthesis of NO by cultures bovine endothelial cells. J. Clin. Invest. 91: 1367–1373, 1993.

    PubMed  CAS  Google Scholar 

  42. Hobbs, A.J. and L.J. Ignarro. NO-cGMP signal transduction system. In: Nitric Oxide and the Lung, edited by W.M. Zapol and K. Bloch, New York: Marcel Dekker, 1996, p. 1–57.

    Google Scholar 

  43. Isozaki-Fukuda, Y., T. Kojima, Y. Hirata, N. Ono, S. Sawaragi, I. Sawaragi, and Y. Kobayashi. Plasma immunoreactive ET-1 concentration in human fetal blood: its relation to asphyxia. Pediatr. Res. 30: 244–247, 1991.

    PubMed  CAS  Google Scholar 

  44. Ivy, D.D., J.P. Kinsella, and S.H. Abman. Physiologic characterization of endothelin A and B receptor activity in the ovine fetal pulmonary circulation. J. Clin. Invest. 93: 2141–2148, 1994.

    PubMed  CAS  Google Scholar 

  45. Ivy, D.D., T.A. Parker, J.W. Ziegler, H.L. Galan, J.P. Kinsella, and S.H. Abman. Prolonged endothelin A receptor blockade attenuates chronic intrauterine pulmonary hypertension. J. Clin. Invest. 99: 1179–1186, 1997.

    PubMed  CAS  Google Scholar 

  46. Ivy, D.D., J.W. Ziegler, M.F. Dubus, J.J. Fox, J.P. Kinsella, and S.H. Abman. Chronic intrauterine pulmonary hypertension alters endothelin receptor activity in the ovine fetus. Pediatr. Res. 39: 335–342, 1995.

    Google Scholar 

  47. Ivy, D.D., J.W. Ziegler, J.P. Kinsella, and S.H. Abman. Endothelin blockade augments fetal pulmonary vasodilation. J. Appl. Physiol. 81: 2481–2487, 1996.

    PubMed  CAS  Google Scholar 

  48. Jones, O.W. and S.H. Abman. Systemic and pulmonary hemodynamic effects of big endothelin-1 and phosphoramidon in the ovine fetus. Am. J. Physiol. 266: R929–R935, 1994.

    PubMed  Google Scholar 

  49. Kinsella, J.P., A.C. Halbower, J.W. Ziegler, J.F. Fox, D.D. Ivy, and S.H. Abman. Effects of inhaled NO on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr. Res. 41: 457–463, 1997.

    PubMed  CAS  Google Scholar 

  50. Kinsella, J.P., D.D. Ivy, and S.H. Abman. Inhaled nitric oxide improves gas exchange and lowers pulmonary vascular resistance in severe experimental hyaline membrane disease. Pediatr. Res. 36: 402–408, 1994.

    PubMed  CAS  Google Scholar 

  51. Kinsella, J.P., D.D. Ivy, and S.H. Abman. Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am. J. Physiol. 267: H1955–H1961, 1994.

    PubMed  CAS  Google Scholar 

  52. Kinsella, J.P., J.A. McQueston, A.A. Rosenberg, and S.H. Abman. Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation. Am. J. Physiol. 263: H875–H880, 1992.

    PubMed  CAS  Google Scholar 

  53. Kinsella, J.P., S.R. Neish, D.D. Ivy, E. Shaffer, and S.H. Abman. Clinical responses to prolonged treatment of persistent pulmonary hypertension of the newborn. J. Pediatr. 123: 103–108, 1993.

    PubMed  CAS  Google Scholar 

  54. Kinsella, J.P., S. Neish, E. Shaffer, and S.H. Abman. Low dose inhalational nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340: 819–820, 1992.

    PubMed  CAS  Google Scholar 

  55. Kobzik, L., D.S. Bredt, C.J. Lowenstein, J. Drazen, B. Gaston, D. Sugarbaker, and J.S. Stamler. NOS in human and rat lung: immunocytochemical and histochemical localization. Am. J. Respir. Cell Mol. Biol. 9: 371–377, 1993.

    PubMed  CAS  Google Scholar 

  56. Kourembanas, D., L. McQuillan, G. Leung, and D. Faller. NO regulates the expression of vasoconstrictors and growth factors by vascular endothelium under normoxia and hypoxia. J. Clin. Invest. 92: 99–104, 1993.

    PubMed  CAS  Google Scholar 

  57. Kourembanas, S., P.A. Marsden, L.P. McQuillan, and D.V. Faller. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 88: 1054–1057, 1991.

    PubMed  CAS  Google Scholar 

  58. Le Cras, T.D., C. Xue, A. Rengesamy, and R.A. Johns. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am. J. Physiol. 270: L164–L170, 1996.

    PubMed  Google Scholar 

  59. Leffler, C.W., J.R. Hessler, and R.S. Green. Mechanism of stimulation of pulmonary prostacyclin synthesis at birth. Prostaglandins 28: 877–87, 1984.

    PubMed  CAS  Google Scholar 

  60. Leffler, C.W., T.L. Tyler, and S. Cassin. Effect of indomethacin on pulmonary vascular response to ventilation of fetal goats. Am. J. Physiol. 234: H346–H351, 1978.

    PubMed  CAS  Google Scholar 

  61. Lerman, A., E.K. Sandok, F.L. Hildebrand, and J.C. Burnett. Inhibition of EDRF enhances endothelin-mediated vasoconstriction. Circulation 85: 1894–1898, 1992.

    PubMed  CAS  Google Scholar 

  62. Levin, D.L., M.A. Heymann, J.A. Kitterman, G.A. Gregory, R.H. Phibbs, and A.M. Rudolph. Persistent pulmonary hypertension of the newborn. J. Pediatr. 89: 626–633, 1976.

    PubMed  CAS  Google Scholar 

  63. Levin, D.L., A.I. Hyman, M.A. Heymann, and A.M. Rudolph. Fetal hypertension and the development of increased pulmonary vascular smooth muscle: a possible mechanism for persistent pulmonary hypertension of the newborn infant. J. Pediatr. 92: 265–269, 1978.

    PubMed  CAS  Google Scholar 

  64. Lewis, A.B., M.A. Heymann, and A.M. Rudolph. Gestational changes in pulmonary vascular responses in fetal lambs in utero. Circ. Res. 39: 536–541, 1976.

    PubMed  CAS  Google Scholar 

  65. Li, H., S. Chen, Y. Chen, Q. Meng, J. Durand, S. Oparil, and T. Elton. Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia. J. Appl. Physiol. 77: 1451–1459, 1994.

    PubMed  CAS  Google Scholar 

  66. MacCumber, M.W., C.A. Ross, B.M. Glaser, and S.H. Snyder. Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc. Natl. Acad. Sci. USA 86: 7285–7289, 1989.

    PubMed  CAS  Google Scholar 

  67. McQueston, J.A., D.N. Cornfield, I.F. McMurtry, and S.H. Abman. Effects of oxygen and exogenous L-arginine on endothelium-derived relaxing factor activity in the fetal pulmonary circulation. Am. J. Physiol. 264: H865–7871, 1993.

    PubMed  CAS  Google Scholar 

  68. McQueston, J.A., J.P. Kinsella, D.D. Ivy, I.F. McMurtry, and S.H. Abman. Chronic pulmonary hypertension in utero impairs endothelium-dependent vasodilation. Am. J. Physiol. 268: H288–H294, 1995.

    PubMed  CAS  Google Scholar 

  69. McQuillan, L.P., G.K. Leung, P.A. Marsden, S.K. Kostyk, and S. Kourembanas. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am. J. Physiol. 267: H1921–H1927, 1994.

    PubMed  CAS  Google Scholar 

  70. Michael, J.R. and B.A. Markewitz. Endothelins and the lung. Am. J. Respir. Crit. Care Med. 154: 555–581, 1996.

    PubMed  CAS  Google Scholar 

  71. Moncada, S., R.M.J. Palmer, and E.A. Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142, 1991.

    PubMed  CAS  Google Scholar 

  72. Morbidelli, L., C.H. Chang, J.G. Douglas, H.J. Granger, C.A. Maggi, P. Geppetti, F. Ledda. NO mediates mitogenic effect of VEGF on coronary venular endothelium. Am. J. Physiol. 270: H411–H415, 1996.

    PubMed  CAS  Google Scholar 

  73. Morin, F.C. Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr. Res. 25: 245–250, 1989.

    PubMed  Google Scholar 

  74. Morin, F.C., E.A. Egan, W. Ferguson, and C.E.G. Lundgren. Development of pulmonary vascular response to oxygen. Am. J. Physiol. 254: H542–H546, 1988.

    PubMed  Google Scholar 

  75. Neonatal Inhaled NO Study Group. Inhaled NO in full-term and nearly full-term infants with hypoxic respiratory failure. N. Engl. J. Med. 336: 597–604, 1997.

    Google Scholar 

  76. North, A.J., R.A. Star, T.S. Brannon, K. Ujiie, L.B. Wells, C.J. Lowenstien, S.H. Snyder, and P.W. Shaul. NO synthase type I and type III gene expression are developmentally regulated in rat lung. Am. J. Physiol. 266: L635–L641, 1994.

    PubMed  CAS  Google Scholar 

  77. Rairigh, R., T.D. LeCras, D.D. Ivy, J.P. Kinsella, G. Richter, M. Horan, I. Fan, and S.H. Abman. Role of inducible NOS in regulation of pulmonary vascular tone in the ovine fetus. J. Clin Invest 101: 15–21, 1998.

    PubMed  CAS  Google Scholar 

  78. Roberts, J.D., T. Chen, N. Kawai, J. Wain, P. Dupuy, A. Shimouchi, K. Bloch, D. Polaner, and W.M. Zapol. Inhaled NO reverses pulmonary vasoconstriction in the hypoxic and acidoticnewborn lamb. Circ. Res. 72: 246–254, 1993.

    PubMed  CAS  Google Scholar 

  79. Roberts, J.D., J.R. Fineman, F.C. Morin, P.W. Shaul, S. Rimar, M.D. Schreiber, R.A. Polin, M.S. Zwass, M.M. Zayek, I. Gross, M.A. Heymann, and W.M. Zapol. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. N. Engl. J. Med. 336: 605–610, 1997.

    PubMed  CAS  Google Scholar 

  80. Roberts, J.D., J.P. Kinsella, and S.H. Abman. Inhaled NO in neonatal pulmonary hypertension and severe RDS: experimental and clinical studies. In: Nitric Oxide and the Lung, edited by W.M. Zapol and K. Bloch, New York: Marcel Dekker, 1996, p. 333–363.

    Google Scholar 

  81. Roberts, J.D., D.M. Polaner, P. Lang, and W.M. Zapol. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340: 818–819, 1992.

    PubMed  CAS  Google Scholar 

  82. Rossaint, R., K.J. Falcke, F. Lopez, K. Slama, U. Pison, and W.M. Zapol. Inhaled NO for the adult respiratory distress syndrome. N. Engl. J. Med. 328: 399–405, 1993.

    PubMed  CAS  Google Scholar 

  83. Rosenberg, A.A., J. Kennaugh, S.L. Koppenhafer, M. Loomis, and S.H. Abman. Increased immunoreactive endothelin-1 levels in persistent pulmonary hypertension of the newborn. J. Pediatr. 123: 109–114, 1993.

    PubMed  CAS  Google Scholar 

  84. Rudolph, A.M. Fetal and neonatal pulmonary circulation. Annu. Rev. Physiol. 41: 383–395, 1979.

    PubMed  CAS  Google Scholar 

  85. Rudolph A.M., M.A. Heymann, and A.B. Lewis. Physiology and pharmacology of the pulmonary circulation in the fetus and newborn. In: Development of the lung, edited by W. Hodson, New York: Marcel Dekker, 1977, p. 497–453.

    Google Scholar 

  86. Shaul, P.W., E.J. Smart, L.J. Robinson, Z. German, I.S. Yuhanna, Y. Ying, R.G.W. Anderson, and T. Michel. Acylation targets endothelial NO synthase to plasmalemal calveolae. J. Biol. Chem. 271: 6518–6522, 1996.

    PubMed  CAS  Google Scholar 

  87. Shaul, P.W., I.S. Yuhanna, Z. German, Z. Chen, R.H. Steinhorn, and F.C. Morin. Pulmonary endothelial nitric oxide synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am. J. Physiol. 272: L1005–L1012, 1997.

    PubMed  CAS  Google Scholar 

  88. Soifer, S.J., R.D. Loitz, C. Roman, and M.A. Heymann. Leukotriene end organ antagonists increase pulmonary blood flow infeal lambs. Am. J. Physiol. 249: H570–H576, 1985.

    PubMed  CAS  Google Scholar 

  89. Steinhorn, R.H., J.A. Russell, and F.C. Morin. Pulmonary arteries from newborn lambs with persistent pulmonary hypertension have decreased sensitivity to NO [Abstract]. Pediatr. Res. 35: 354A, 1994.

    Google Scholar 

  90. Stenmark, K.R., S.H. Abman, and F.J. Accurso. Etiologic mechanisms of persistent pulmonary hypertension of the newborn. In: Pulmonary vascular physiology and pathophysiology, edited by E.K. Weir and J.T. Reeves. New York: Marcel Dekker, 1989, p. 335–402.

    Google Scholar 

  91. Stewart, D.J., R.D. Levy, P. Cernacek, and D. Langleben. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann. Intern. Med. 114: 464–469, 1991.

    PubMed  CAS  Google Scholar 

  92. Thébaud, B., P. de Lagausie, E. Souil, Y. Aigrain, J.C. Mercier, and A.T. Dinh-Xuan. Pulmonary vasodilation is not impaired in congenital diaphragmatic hernia [Abstract]. Am. J. Respir. Crit. Care Med. 155: A948, 1997.

    Google Scholar 

  93. Thomae, K.R., D.K. Nakayama, T.R. Billiar, R.L. Simmons, B.R. Pitt, and P. Davies. Effect of NO on fetal pulmonary artery smooth muscle growth. J. Surg. Res. 270: H411–H415, 1996.

    Google Scholar 

  94. Velvis, H., P. Moore, and M.A. Heymann. Prostaglandin inhibition prevents the fall in pulmonary vascular resistance as the result of rhythmic distension of the lungs in fetal lambs. Pediatr. Res. 30: 62–67, 1991.

    PubMed  CAS  Google Scholar 

  95. Villamor, E., T.D. Le Cras, M.P. Horan, A.C. Halbower, R.M. Tuder, and S.H. Abman. Chronic intrauterine hypertension impairs endothelial nitric oxide sythase in the ovine fetus. Am. J. Physiol. 272: L1013–L1020, 1997.

    PubMed  CAS  Google Scholar 

  96. Wang, Y. and F. Coceani. Isolated pulmonary resistance vessels from fetal lambs: contractile behavior and responses to indomethacin and endothelin-1. Circ. Res. 71: 320–330, 1992.

    PubMed  CAS  Google Scholar 

  97. Wallen, L.D., S.F. Perry, J.T. Alston, and J.E. Maloney. Morphometric study of the role of pulmonary arterial flow in fetal lung growth in sheep. Pediatr. Res. 27: 122–127, 1990.

    PubMed  CAS  Google Scholar 

  98. Walther, F.J., F.J. Bender, and J.O. Leighton. Persistent pulmonary hypertension in premature neonates with severe RDS. Pediatrics 90: 899–904, 1992.

    PubMed  CAS  Google Scholar 

  99. Winters, J.W., J. Wong, D. van Dyke, M. Johengen, M.A. Heymann, and J.R. Fineman. Endothelin blockade does not alter the increase in pulmonary blood flow during oxygen ventilation in fetal lambs. Pediatr. Res. 40: 152–157, 1996.

    PubMed  CAS  Google Scholar 

  100. Wong, J., J.R. Fineman, and M.A. Heymann. The role of endothelin and endothelin receptor subtypes in regulation of fetal pulmonary vascular tone. Pediatr. Res. 35: 664–670, 1994.

    PubMed  CAS  Google Scholar 

  101. Yanagisawa, M., H. Kurihara, S. Kirmura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.

    PubMed  CAS  Google Scholar 

  102. Ziche, M., L. Morbidelli, E. Masini, S. Amerini, H.J. Granger, C.A. Maggi, P. Geppetti, and F. Ledda. NO mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest. 94: 2036–2044, 1994.

    PubMed  CAS  Google Scholar 

  103. Ziegler, J.W., D.D. Ivy, J.J. Fox, J.P. Kinsella, W.R. Clarke, and S.H. Abman. Dipyridamole, a cGMP phosphodiesterase inhibitor, causes pulmonary vasodilation in the ovine fetus. Am. J. Physiol. 269: H473–H479, 1995.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 American Physiological Society

About this chapter

Cite this chapter

Abman, S.H., Kinsella, J.P., Mercier, JC. (1999). Nitric Oxide and Endothelin in the Developing Pulmonary Circulation: Physiologic and Clinical Implications. In: Gaultier, C., Bourbon, J.R., Post, M. (eds) Lung Development. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7537-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7537-8_7

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7537-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics