Skip to main content

Angiogenesis in Myocardial Ischemia

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Abstract

Progress in cardiovascular biology including the identification of various angiogenic growth factors and the discovery of somatic stem/progenitor cells including bone marrow-derived endothelial progenitor cells, mesenchymal stem cells, skeletal myoblasts, adipose tissue-derived regenerative cells, and resident cardiac stem/progenitor cells has drastically developed the field of therapeutic angiogenesis for refractory ischemic heart disease. Accumulating evidences in both animal studies and human clinical trials support the notion that protein or gene therapy of various angiogenic growth factors and transplantation of the somatic stem/progenitor cells may have significant potency of enhancing new blood vessel formation in ischemic myocardium. This chapter provides an overview of the preclinical and clinical reports to demonstrate the usefulness and the current limitations of the therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. World Health Organization, Cardiovascular Diseases. http://www.who.int/cardiovascular_diseases/en/

    Google Scholar 

  2. White HD, Chew DP (2008) Acute myocardial infarction. Lancet 372:570–584

    PubMed  CAS  Google Scholar 

  3. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    PubMed  CAS  Google Scholar 

  4. Goussetis E, Manginas A, Koutelou M et al (2006) Intracoronary infusion of CD133+ and CD133-CD34+ selected autologous bone marrow progenitor cells in patients with chronic ischemic cardiomyopathy: cell isolation, adherence to the infarcted area, and body distribution. Stem Cells 24:2279–2283

    PubMed  CAS  Google Scholar 

  5. Askari AT, Unzek S, Popovic ZB et al (2003) Effect of stromal-cell-derived factor 1 on stem-­cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    PubMed  CAS  Google Scholar 

  6. Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637

    PubMed  CAS  Google Scholar 

  7. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  8. Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  9. Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556–1566

    PubMed  Google Scholar 

  10. Lewis BS, Flugelman MY, Weisz A et al (1997) Angiogenesis by gene therapy: a new horizon for myocardial revascularization? Cardiovasc Res 35:490–497

    PubMed  CAS  Google Scholar 

  11. Ripa RS, Wang Y, Jorgensen E et al (2006) Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur Heart J 27:1785–1792

    PubMed  CAS  Google Scholar 

  12. Kastrup J, Jorgensen E, Ruck A et al (2005) Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol 45:982–988

    PubMed  CAS  Google Scholar 

  13. Circulation research thematic synopsis: stem cells and cardiac progenitor cells. Circ Res 111:e1–e14 (2012)

    Google Scholar 

  14. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109:2487–2491

    PubMed  Google Scholar 

  15. Henry TD, Annex BH, McKendall GR et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365

    PubMed  CAS  Google Scholar 

  16. Laham RJ, Sellke FW, Edelman ER et al (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100:1865–1871

    PubMed  CAS  Google Scholar 

  17. Simons M, Annex BH, Laham RJ et al (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105:788–793

    PubMed  CAS  Google Scholar 

  18. Kawasaki T, Kitsukawa T, Bekku Y et al (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    PubMed  CAS  Google Scholar 

  19. Eichmann A, Simons M (2012) VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 24:188–193

    PubMed  CAS  Google Scholar 

  20. Costa C, Soares R, Reis-Filho JS et al (2002) Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol 55:429–434

    PubMed  CAS  Google Scholar 

  21. Waltenberger J, Mayr U, Pentz S, Hombach V (1996) Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94:1647–1654

    PubMed  CAS  Google Scholar 

  22. Kalka C, Masuda H, Takahashi T et al (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86:1198–1202

    PubMed  CAS  Google Scholar 

  23. Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    PubMed  CAS  Google Scholar 

  24. Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569

    PubMed  CAS  Google Scholar 

  25. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    PubMed  CAS  Google Scholar 

  26. Seiler C, Pohl T, Wustmann K et al (2001) Promotion of collateral growth by granulocyte-­macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation 104:2012–2017

    PubMed  CAS  Google Scholar 

  27. Maekawa Y, Anzai T, Yoshikawa T et al (2004) Effect of granulocyte-macrophage colony-­stimulating factor inducer on left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 44:1510–1520

    PubMed  CAS  Google Scholar 

  28. Deng Z, Yang C, Deng H et al (2006) Effects of GM-CSF on the stem cells mobilization and plasma C-reactive protein levels in patients with acute myocardial infarction. Int J Cardiol 113:92–96

    PubMed  Google Scholar 

  29. Anderlini P, Donato M, Chan KW et al (1999) Allogeneic blood progenitor cell collection in normal donors after mobilization with filgrastim: the M.D. Anderson Cancer Center experience. Transfusion 39:555–560

    PubMed  CAS  Google Scholar 

  30. Levesque JP, Hendy J, Takamatsu Y et al (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111:187–196

    PubMed  CAS  Google Scholar 

  31. Kuethe F, Figulla HR, Herzau M et al (2005) Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J 150:115

    PubMed  CAS  Google Scholar 

  32. Harada M, Qin Y, Takano H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311

    PubMed  CAS  Google Scholar 

  33. Deindl E, Zaruba MM, Brunner S et al (2006) G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J 20:956–958

    PubMed  CAS  Google Scholar 

  34. Suda T, Suda J, Kajigaya S et al (1987) Effects of recombinant murine granulocyte colony-­stimulating factor on granulocyte-macrophage and blast colony formation. Exp Hematol 15:958–965

    PubMed  CAS  Google Scholar 

  35. Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-­mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376

    PubMed  CAS  Google Scholar 

  36. Heeschen C, Aicher A, Lehmann R et al (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346

    PubMed  CAS  Google Scholar 

  37. Lipsic E, van der Meer P, Voors AA et al (2006) A single bolus of a long-acting erythropoietin analogue darbepoetin alfa in patients with acute myocardial infarction: a randomized feasibility and safety study. Cardiovasc Drugs Ther 20:135–141

    PubMed  CAS  Google Scholar 

  38. Ruifrok WP, de Boer RA, Westenbrink BD et al (2008) Erythropoietin in cardiac disease: new features of an old drug. Eur J Pharmacol 585:270–277

    PubMed  CAS  Google Scholar 

  39. Fazio S, Sabatini D, Capaldo B et al (1996) A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med 334:809–814

    PubMed  CAS  Google Scholar 

  40. Genth-Zotz S, Zotz R, Geil S et al (1999) Recombinant growth hormone therapy in patients with ischemic cardiomyopathy: effects on hemodynamics, left ventricular function, and cardiopulmonary exercise capacity. Circulation 99:18–21

    PubMed  CAS  Google Scholar 

  41. Isgaard J, Bergh CH, Caidahl K et al (1998) A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J 19:1704–1711

    PubMed  CAS  Google Scholar 

  42. O’Driscoll JG, Green DJ, Ireland M et al (1997) Treatment of end-stage cardiac failure with growth hormone. Lancet 349:1068

    PubMed  Google Scholar 

  43. Osterziel KJ, Strohm O, Schuler J et al (1998) Randomised, double-blind, placebo-­controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351:1233–1237

    PubMed  CAS  Google Scholar 

  44. Volterrani M, Desenzani P, Lorusso R et al (1997) Haemodynamic effects of intravenous growth hormone in congestive heart failure. Lancet 349:1067–1068

    PubMed  CAS  Google Scholar 

  45. Kim KL, Shin IS, Kim JM et al (2006) Interaction between Tie receptors modulates angiogenic activity of angiopoietin2 in endothelial progenitor cells. Cardiovasc Res 72:394–402

    PubMed  CAS  Google Scholar 

  46. Takahashi K, Ito Y, Morikawa M et al (2003) Adenoviral-delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction. Mol Ther 8:584–592

    PubMed  CAS  Google Scholar 

  47. Bussolino F, Di Renzo MF, Ziche M et al (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119:629–641

    PubMed  CAS  Google Scholar 

  48. Yasuda S, Goto Y, Baba T et al (2000) Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol 36:115–121

    PubMed  CAS  Google Scholar 

  49. Khurana R, Moons L, Shafi S et al (2005) Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 111:2828–2836

    PubMed  CAS  Google Scholar 

  50. Kolakowski S Jr, Berry MF, Atluri P et al (2006) Placental growth factor provides a novel local angiogenic therapy for ischemic cardiomyopathy. J Card Surg 21:559–564

    PubMed  Google Scholar 

  51. Luttun A, Tjwa M, Moons L et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8:831–840

    PubMed  CAS  Google Scholar 

  52. Kuang D, Zhao X, Xiao G et al (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 103:265–273

    PubMed  CAS  Google Scholar 

  53. Masuda H, Kalka C, Takahashi T et al (2007) Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 101:598–606

    PubMed  CAS  Google Scholar 

  54. Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    PubMed  CAS  Google Scholar 

  55. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    PubMed  CAS  Google Scholar 

  56. Narmoneva DA, Vukmirovic R, Davis ME et al (2004) Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110:962–968

    PubMed  Google Scholar 

  57. Kamihata H, Matsubara H, Nishiue T et al (2002) Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol 22:1804–1810

    PubMed  CAS  Google Scholar 

  58. Kinnaird T, Stabile E, Burnett MS et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    PubMed  CAS  Google Scholar 

  59. Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    PubMed  CAS  Google Scholar 

  60. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    PubMed  Google Scholar 

  61. Wollert KC, Drexler H (2005) Clinical applications of stem cells for the heart. Circ Res 96:151–163

    PubMed  CAS  Google Scholar 

  62. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    PubMed  CAS  Google Scholar 

  63. Iwasaki H, Kawamoto A, Ishikawa M et al (2006) Dose-dependent contribution of CD34-­positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113:1311–1325

    PubMed  CAS  Google Scholar 

  64. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    PubMed  CAS  Google Scholar 

  65. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  66. Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13:436–448

    PubMed  CAS  Google Scholar 

  67. Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    PubMed  CAS  Google Scholar 

  68. Shiota M, Heike T, Haruyama M et al (2007) Isolation and characterization of bone marrow-­derived mesenchymal progenitor cells with myogenic and neuronal properties. Exp Cell Res 313:1008–1023

    PubMed  CAS  Google Scholar 

  69. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    PubMed  CAS  Google Scholar 

  70. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479

    PubMed  CAS  Google Scholar 

  71. Dai W, Hale SL, Martin BJ et al (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112:214–223

    PubMed  Google Scholar 

  72. Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369

    PubMed  CAS  Google Scholar 

  73. Yoon YS, Park JS, Tkebuchava T et al (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109:3154–3157

    PubMed  Google Scholar 

  74. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98:2512–2523

    PubMed  CAS  Google Scholar 

  75. Allen RE, Rankin LL (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc Soc Exp Biol Med 194:81–86

    PubMed  CAS  Google Scholar 

  76. Ghostine S, Carrion C, Souza LC et al (2002) Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106:I131–I136

    PubMed  Google Scholar 

  77. Pagani FD, DerSimonian H, Zawadzka A et al (2003) Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 41:879–888

    PubMed  Google Scholar 

  78. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    PubMed  CAS  Google Scholar 

  79. Miranville A, Heeschen C, Sengenes C et al (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110:349–355

    PubMed  CAS  Google Scholar 

  80. Planat-Benard V, Silvestre JS, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    PubMed  Google Scholar 

  81. Madonna R, Geng YJ, De Caterina R (2009) Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol 29:1723–1729

    PubMed  CAS  Google Scholar 

  82. Meliga E, Strem BM, Duckers HJ, Serruys PW (2007) Adipose-derived cells. Cell Transplant 16:963–970

    PubMed  Google Scholar 

  83. Valina C, Pinkernell K, Song YH et al (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28:2667–2677

    PubMed  Google Scholar 

  84. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    PubMed  CAS  Google Scholar 

  85. Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    PubMed  CAS  Google Scholar 

  86. Dawn B, Stein AB, Urbanek K et al (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A 102:3766–3771

    PubMed  CAS  Google Scholar 

  87. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    PubMed  Google Scholar 

  88. Banai S, Jaklitsch MT, Shou M et al (1994) Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89:2183–2189

    PubMed  CAS  Google Scholar 

  89. Harada K, Friedman M, Lopez JJ et al (1996) Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 270:H1791–H1802

    PubMed  CAS  Google Scholar 

  90. Pearlman JD, Hibberd MG, Chuang ML et al (1995) Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1:1085–1089

    PubMed  CAS  Google Scholar 

  91. Lopez JJ, Laham RJ, Stamler A et al (1998) VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 40:272–281

    PubMed  CAS  Google Scholar 

  92. Henry TD, Rocha-Singh K, Isner JM et al (2001) Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J 142:872–880

    PubMed  CAS  Google Scholar 

  93. Losordo DW, Vale PR, Symes JF et al (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804

    PubMed  CAS  Google Scholar 

  94. Rosengart TK, Lee LY, Patel SR et al (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100:468–474

    PubMed  CAS  Google Scholar 

  95. Symes JF, Losordo DW, Vale PR et al (1999) Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 68:830–836; discussion 836–837

    Google Scholar 

  96. Vale PR, Losordo DW, Milliken CE et al (2000) Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102:965–974

    PubMed  CAS  Google Scholar 

  97. Vale PR, Losordo DW, Milliken CE et al (2001) Randomized, single-blind, placebo-­controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103:2138–2143

    PubMed  CAS  Google Scholar 

  98. Hedman M, Hartikainen J, Syvanne M et al (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107:2677–2683

    PubMed  CAS  Google Scholar 

  99. Grines CL, Watkins MW, Helmer G et al (2002) Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105:1291–1297

    PubMed  CAS  Google Scholar 

  100. Grines C, Rubanyi GM, Kleiman NS et al (2003) Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am J Cardiol 92:24N–31N

    PubMed  CAS  Google Scholar 

  101. Grines CL, Watkins MW, Mahmarian JJ et al (2003) A randomized, double-blind, placebo-­controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 42:1339–1347

    PubMed  CAS  Google Scholar 

  102. Henry TD, Grines CL, Watkins MW et al (2007) Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 50:1038–1046

    PubMed  CAS  Google Scholar 

  103. Zbinden S, Zbinden R, Meier P et al (2005) Safety and efficacy of subcutaneous-only granulocyte-­macrophage colony-stimulating factor for collateral growth promotion in patients with coronary artery disease. J Am Coll Cardiol 46:1636–1642

    PubMed  CAS  Google Scholar 

  104. Ince H, Petzsch M, Kleine HD et al (2005) Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) trial. Circulation 112:I73–I80

    PubMed  Google Scholar 

  105. Ince H, Petzsch M, Kleine HD et al (2005) Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation 112:3097–3106

    PubMed  CAS  Google Scholar 

  106. Suarez de Lezo J, Torres A, Herrera I et al (2005) Effects of stem-cell mobilization with recombinant human granulocyte colony stimulating factor in patients with percutaneously revascularized acute anterior myocardial infarction. Rev Esp Cardiol 58:253–261

    PubMed  Google Scholar 

  107. Valgimigli M, Rigolin GM, Cittanti C et al (2005) Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 26:1838–1845

    PubMed  CAS  Google Scholar 

  108. Engelmann MG, Theiss HD, Hennig-Theiss C et al (2006) Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol 48:1712–1721

    PubMed  CAS  Google Scholar 

  109. Ripa RS, Jorgensen E, Wang Y et al (2006) Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-­controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 113:1983–1992

    PubMed  CAS  Google Scholar 

  110. Zohlnhofer D, Ott I, Mehilli J et al (2006) Stem cell mobilization by granulocyte ­colony-­stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 295:1003–1010

    PubMed  Google Scholar 

  111. Strauer BE, Brehm M, Zeus T et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    PubMed  Google Scholar 

  112. Assmus B, Schachinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    PubMed  Google Scholar 

  113. Schachinger V, Assmus B, Britten MB et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44:1690–1699

    PubMed  Google Scholar 

  114. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    PubMed  Google Scholar 

  115. Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    PubMed  CAS  Google Scholar 

  116. Beitnes JO, Gjesdal O, Lunde K et al (2011) Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention, but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub-study of the randomized-­controlled ASTAMI study. Eur J Echocardiogr 12:98–106

    PubMed  Google Scholar 

  117. Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232

    PubMed  CAS  Google Scholar 

  118. Perin EC, Willerson JT, Pepine CJ et al (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307:1717–1726

    PubMed  CAS  Google Scholar 

  119. Traverse JH, Henry TD, Ellis SG et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306:2110–2119

    PubMed  CAS  Google Scholar 

  120. Kawamoto A, Iwasaki H, Kusano K et al (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114:2163–2169

    PubMed  Google Scholar 

  121. Kang HJ, Kim HS, Zhang SY et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363:751–756

    PubMed  CAS  Google Scholar 

  122. Losordo DW, Schatz RA, White CJ et al (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115:3165–3172

    PubMed  Google Scholar 

  123. Losordo DW, Henry TD, Davidson C et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109:428–436

    PubMed  CAS  Google Scholar 

  124. Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    PubMed  Google Scholar 

  125. Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    PubMed  Google Scholar 

  126. Houtgraaf JH, den Dekker WK, van Dalen BM et al (2012) First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 59:539–540

    PubMed  Google Scholar 

  127. Bolli R, Chugh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    PubMed  Google Scholar 

  128. Stewart DJ, Hilton JD, Arnold JM et al (2006) Angiogenic gene therapy in patients with ­nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther 13:1503–1511

    PubMed  CAS  Google Scholar 

  129. Gyongyosi M, Khorsand A, Zamini S et al (2005) NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation 112:I157–I165

    PubMed  Google Scholar 

  130. Stewart DJ, Kutryk MJ, Fitchett D et al (2009) VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 17:1109–1115

    PubMed  CAS  Google Scholar 

  131. Kastrup J, Jorgensen E, Fuchs S et al (2011) A randomised, double-blind, placebo-­controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention 6:813–818

    PubMed  Google Scholar 

  132. Kukula K, Chojnowska L, Dabrowski M et al (2011) Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J 161:581–589

    PubMed  CAS  Google Scholar 

  133. Meyer GP, Wollert KC, Lotz J et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294

    PubMed  Google Scholar 

  134. Lunde K, Solheim S, Aakhus S et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355:1199–1209

    PubMed  CAS  Google Scholar 

  135. Tse HF, Thambar S, Kwong YL et al (2007) Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur Heart J 28:2998–3005

    PubMed  Google Scholar 

  136. Gyongyosi M, Lang I, Dettke M et al (2009) Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat Clin Pract Cardiovasc Med 6:70–81

    PubMed  Google Scholar 

  137. Tendera M, Wojakowski W, Ruzyllo W et al (2009) Intracoronary infusion of bone marrow-­derived selected CD34 + CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) trial. Eur Heart J 30:1313–1321

    PubMed  Google Scholar 

  138. Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuhiko Kawamoto M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujita, Y., Asahara, T., Kawamoto, A. (2013). Angiogenesis in Myocardial Ischemia. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_15

Download citation

Publish with us

Policies and ethics