Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2546 Accesses

Abstract

This chapter deals with the application of CFOAs in filter design. We first present a number of multifunction voltage-mode and current-mode biquad filter topologies employing two to five CFOAs choosing from a large number of existing configurations. In the category of voltage-mode filters, both single input multiple output (SIMO) type as well as multiple input single output (MISO) type configurations have been included and their significant features have been highlighted. However, in the category of current-mode filters, only MISO-type universal biquad filters have been included since no SIMO-type CFOA-based biquads are known to exist till now. Subsequently, a number of universal, mixed-mode biquads capable of realizing all the five standard filter functions in all the four possible modes, namely, VM, CM, trans-impedance and trans-admittance have been highlighted. This is followed by active-R multi-function biquads, inverse active filters, MOSFETs-C filters and the design of higher order filter employing CFOAs in which case doubly-terminated wave active filters based upon LC ladder proto-types and higher order modular filter structures are described in detail. Finally, a number of ideas for further research have also been indicated.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI: http://dx.doi.org/10.1007/978-1-4614-5188-4_9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the category of SIMO-type CM biquad, surprisingly, no configuration based on CFOAs is known to have been published in the technical literature till the time of writing this chapter.

  2. 2.

    A re-analysis of the circuit of Fig. 4.16 reveals that this circuit needs two realization constraints G1 = G4 and G2 = G5, in case of BS filter realization also, which appear to have been missed in [16] inadvertently.

References

  1. Ibrahim MA, Minaei S, Kuntman H (2005) A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Int J Electron Commun (AEU) 59:311–318

    Article  Google Scholar 

  2. Soliman AM (1998) Generation of CCII and CFOA filters from passive RLC filters. Int J Electron 85:293–312

    Article  Google Scholar 

  3. Senani R (1998) Realization of a class of analog signal processing/signal generation circuits: novel configurations using current feedback op-amps. Frequenz 52:196–206

    Article  Google Scholar 

  4. Bhaskar DR (2003) Realisation of second-order sinusoidal oscillator/filters with non-interacting Controls using CFAs. Frequenz 57:1–3

    Article  Google Scholar 

  5. Chang CM, Hwang CS, Tu SH (1994) Voltage-mode notch, low pass and band pass filter using current-feedback amplifiers. Electron Lett 30:2022–2023

    Article  Google Scholar 

  6. Singh AK, Senani R (2005) CFOA-based state-variable biquad and its high-frequency compensation. IEICE Electron Express 2:232–238

    Article  Google Scholar 

  7. Soliman AM (1996) Applications of current feedback operational amplifiers. Analog Integr Circ Sign Process 11:265–302

    Google Scholar 

  8. Abuelma’atti MT, Al-Zaher HA (1998) New universal filter with one input and five outputs using current-feedback amplifiers. Analog Integr Circ Sign Process 16:239–244

    Article  Google Scholar 

  9. Abuelma’atti MT, Al-Zaher HA (1998) New universal filter with one input and five outputs using current-feedback amplifiers. Proc Natl Sci Counc ROC (A) 22:504–508

    Google Scholar 

  10. Horng JW, Chang CK, Chu JM (2002) Voltage-mode universal biquadratic filter using single current-feedback amplifier. IEICE Trans Fundament E85-A:1970–1973

    Google Scholar 

  11. Abuelma’atti MT, Al-Shahrani SM (1996) New universal filter using two current-feedback amplifiers. Int J Electron 80:753–756

    Article  Google Scholar 

  12. Abuelma’atti MT, Al-Zaher HA (1997) New universal filter using two current-feedback amplifiers. Active Passive Electron Comp 20:111–117

    Article  Google Scholar 

  13. Liu SI, Wu DS (1995) New current-feedback amplifier-based universal biquadratic filter. IEEE Trans Instrum Meas 44:915–917

    Article  Google Scholar 

  14. Wu DS, Lee HT, Hwang YS, Wu YP (1994) CFA-based universal filter deduced from a mason graph. Int J Electron 77:1059–1065

    Article  Google Scholar 

  15. Liu SI (1995) High input impedance filters with low components spread using current-feedback amplifiers. Electron Lett 31:1042–1043

    Article  Google Scholar 

  16. Topaloglu S, Sagbas M, Anday F (2012) Three-input single-output second-order filters using current-feedback amplifiers. Int J Electron Commun (AEU) 66:683–686

    Article  Google Scholar 

  17. Nikoloudis S, Psychalinos C (2010) Multiple input single output universal biquad filer with current feedback operational amplifiers. Circ Syst Sig Process 29:1167–1180

    Article  MATH  Google Scholar 

  18. Horng JW, Chou PY, Wu JU (2010) Voltage/Current-mode multifunction filters using current-feedback amplifiers and grounded capacitors. Active Passive Electron Comp 5:785631. doi:10.1155/2010/785631

  19. Sharma RK, Senani R (2003) Multifunction CM/VM biquads realized with a single CFOA and grounded capacitors. Int J Electron Commun (AEU) 57:301–308

    Article  Google Scholar 

  20. Sharma RK, Senani R (2004) On the realization of universal current mode biquads using a single CFOA. Analog Integr Circ Sign Process 41:65–78

    Article  Google Scholar 

  21. Sharma RK, Senani R (2004) Universal current mode biquad using a single CFOA. Int J Electron 91:175–183

    Article  Google Scholar 

  22. Chang CM, Soliman AM, Swamy MNS (2007) Analytical synthesis of low-sensitivity high-order voltage-mode DDCC and FDCCII-grounded R and C All-pass filter structures. IEEE Trans Circ Syst-I 54:1430–1443

    Article  Google Scholar 

  23. Singh VK, Singh AK, Bhaskar DR, Senani R (2005) Novel mixed-mode universal biquad configuration. IEICE Electron Express 2:548–553

    Article  Google Scholar 

  24. Toumazou C, Payne A, Pookaiyaudom S (1995) The active-R filter technique applied to current-feedback op-amps. IEEE Int Symp Circ Syst 2:1203–1206

    Google Scholar 

  25. Singh AK, Senani R (2001) Active-R design using CFOA-poles: new resonators, filters, and oscillators. IEEE Trans Circ Syst-II 48:504–511

    Article  Google Scholar 

  26. Singh AK, Senani R, Tripathi MP (1999) Low-component-count high frequency resonators and their applications using op-amp compensation-poles. Frequenz 53:161–169

    Article  Google Scholar 

  27. Horng JW, Hou CL, Huang WS, Yang DY (2011) Voltage/current-mode multifunction filters using one current feedback amplifier and grounded capacitors. Circ Syst 2:60–64

    Article  Google Scholar 

  28. Liu SI (1995) Universal filter using two current-feedback amplifiers. Electron Lett 31:629–630

    Article  Google Scholar 

  29. Horng JW, Lee MH (1997) High input impedance voltage-mode low pass, band pass and high pass filter using current-feedback amplifiers. Electron Lett 33:947–948

    Article  Google Scholar 

  30. Senani R, Gupta SS (1997) Universal voltage-mode/current-mode biquad filter realised with current feedback op-amps. Frequenz 51:203–208

    Article  Google Scholar 

  31. Soliman AM (1998) A new filter configuration using current feedback op-amp. Microelectron J 29:409–419

    Article  Google Scholar 

  32. Horng JW (2000) New configuration for realizing universal voltage-mode filter using two current feedback amplifiers. IEEE Trans Instrum Meas 49:1043–1045

    Article  Google Scholar 

  33. Abuelma’atti MT, Al-Zaher HA (2000) New grounded-capacitor grounded-resistor controlled universal filter using current-feedback amplifiers. Proc Natl Sci Counc ROC (A) 24:205–209

    Google Scholar 

  34. Horng JW (2001) Voltage-mode multifunction filter using one current feedback amplifier and one voltage follower. Int J Electron 88:153–157

    Article  Google Scholar 

  35. Shah NA, Malik MA (2003) Multifunction filter using current feedback amplifiers. Frequenz 59:264–268

    Google Scholar 

  36. Gift SJG, Maundy B (2004) High-performance active band pass filter using current-feedback amplifiers. Int J Electron 91:563–570

    Article  Google Scholar 

  37. Shah NA, Iqbal SZ, Rather MF (2005) Versatile voltage-mode CFA-based universal filter. Int J Electron Commun (AEU) 59:192–194

    Article  Google Scholar 

  38. Mita R, Palumbo G, Pennisi S (2005) Non-idealities of Tow-Thomas biquads using VOA- and CFOA-based miller integrators. IEEE Trans Circ Syst-II 52:22–27

    Article  Google Scholar 

  39. Shah NA, Rather MF, Iqbal SZ (2005) A novel voltage-mode universal filter using a single CFA. J Active Passive Electron Devices 1:183–188

    Google Scholar 

  40. Djebbi M, Assi A, Sawan M (2005) Design of monolithic tunable CMOS band-pass filter using current feedback operational amplifiers. Analog Integr Circ Sign Process 45:143–154

    Article  Google Scholar 

  41. Singh VK, Singh AK, Bhaskar DR, Senani R (2006) New universal biquads employing CFOAs. IEEE Trans Circ Syst-II 53:1299–1303

    Article  Google Scholar 

  42. Sagbas M, Koksal M (2007) Voltage-mode three-input single-output multifunction filters employing minimum number of components. Frequenz 61:87–93

    Article  Google Scholar 

  43. Bhaskar DR, Prasad D (2007) New current mode biquad filter using CFOAs. J Active Passive Electron Devices 2:292–298

    Google Scholar 

  44. Manhas PS, Pal K, Sharma S, Mangotra LK, Jamwal KKS (2007) Realization of high-Q band pass filter using low voltage current feedback amplifiers. J Active Passive Electron Devices 4:13–20

    Google Scholar 

  45. Ferri G, Guerrini N, Piccirilli MC (2003) CFA based fully integrable KHN Biquad. Int Symp Sig Circ Syst 2:569–572

    Google Scholar 

  46. Palumbo G, Pennisi S (1999) Filter circuits synthesis with CFOAs-based differentiators. 16th IEEE Instrument Measurement Technology Conference (IMTC). pp 546–550

    Google Scholar 

  47. Yuce E (2010) Fully integrable mixed-mode universal biquad with specific application of the CFOA. Int J Electron Commun (AEU) 64:304–309

    Article  Google Scholar 

  48. Hou CL, Huang CC, Lan YS, Shaw JJ, Chang CM (1999) Current-mode and voltage-mode universal biquads using a single current-feedback amplifier. Int J Electron 86:929–932

    Article  Google Scholar 

  49. Dostal T (1995) Correspondence: Insensitive voltage-mode and current-mode filters from commercially available transimpedance op-amps. IEE Proc Circ Devices Syst 142:140–143

    Article  Google Scholar 

  50. Gupta SS, Bhaskar DR, Senani R, Singh AK (2009) Inverse active filters employing CFOAs. Electr Eng 91:23–26

    Article  Google Scholar 

  51. Gupta SS, Bhaskar DR, Senani R (2011) New analogue inverse filters realized with current feedback op-amps. Int J Electron 98:1103–1113

    Article  Google Scholar 

  52. Wang HU, Chang SH, Yang TY, Tsai PY (2011) A novel multifunction CFOA-based inverse filter. Circ Syst 2:14–17

    Article  Google Scholar 

  53. Kerwin WJ, Huelsman LP, Newcomb RW (1967) State-variable synthesis for insensitive integrated circuit transfer functions. IEEE J Solid State Circ SC-2:87–92

    Article  Google Scholar 

  54. Bohn DA (1986) Constant-Q graphic equalizer. J Audio Eng Soc 34:16

    Google Scholar 

  55. Baker BC (1999) Anti-aliasing, Analog filter for data acquisition systems. Application notes no. AN699 of Microchip Tech Inc 1-10

    Google Scholar 

  56. Banu M, Tsividis Y (1982) Floating voltage-controlled resistors in CMOS technology. Electron Lett 18:678–679

    Article  Google Scholar 

  57. Banu M, Tsividis Y (1983) Fully integrated active RC filters in MOS technology. IEEE J Solid State Circ SC-18:644–651

    Article  Google Scholar 

  58. Tsividis Y, Banu M, Khoury J (1986) Continuous-time MOSFET-C filters in VLSI. IEEE Trans Circ Syst 33:125–140

    Article  Google Scholar 

  59. Ismail M, Smith SV, Beale RG (1988) A new MOSFET-C universal filter structure for VLSI. IEEE J Solid State Circ 23:183–194

    Article  Google Scholar 

  60. Sakurai S, Ismail M, Michel JY, Sanchez-Sinencio E, Brannen R (1992) A MOSFET-C variable equalizer circuit with simple on-chip automatic tuning. IEEE J Solid State Circ 27:927–934

    Article  Google Scholar 

  61. Liu SI, Tsao HW, Lin TK (1990) MOSFET capacitor filters using unity gain CMOS current conveyors. Electron Lett 26:1430–1431

    Article  Google Scholar 

  62. Liu SI, Tsao HW, Wu J (1991) CCII-based continuous-time filters with reduced gain-bandwidth sensitivity. IEE Proc Circ Devices Syst 138:210–216

    Article  Google Scholar 

  63. Meng XR, Yu ZH (1996) CFA based fully integrated Tow-Thomas biquad. Electron Lett 32:722–723

    Article  Google Scholar 

  64. Gunes EO, Anday F (1997) CFA based fully integrated nth-order lowpass filter. Electron Lett 33:571–573

    Article  Google Scholar 

  65. Salama KN, Elwan HO, Soliman AM (2001) Parasitic-capacitance-insensitive voltage-mode MOSFET-C filters using differential current voltage conveyor. Circ Syst Sig Process 20:11–26

    Article  Google Scholar 

  66. Schmid HP, Moschytz GS (2000) Active- MOSFET-C single-amplifier biquadratic filters for video frequencies. IEE Proc Circ Devices Syst 147:35–41

    Article  Google Scholar 

  67. Chiu W, Tsay JH, Liu SI, Tsao H, Chen JJ (1995) Single-capacitor MOSFET-C integrator using OTRA. Electron Lett 31:1796–1797

    Article  Google Scholar 

  68. Chen JJ, Tsao HW, Liu SI, Chiu W (1995) Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proc Circuits Devices Syst 142:186–192

    Article  Google Scholar 

  69. Chen JJ, Tsao HW, Liu SI (2001) Voltage-mode MOSFET-C filters using operational transresistance amplifier (OTRAs) with reduced parasitic capacitance effect. IEE Proc Circ Devices Syst 148:242–249

    Article  Google Scholar 

  70. Hwang YS, Wu DS, Chen JJ, Shih CC, Chou WS (2007) Realization of higher-order OTRA-MOSFET-C active filters. Circ Syst Sig Process 26:281–291

    Article  MATH  Google Scholar 

  71. Mahmoud SA, Soliman AM (1998) Novel MOS-C balanced-input balanced-output filter using the current feedback operational amplifier. Int J Electron 84:479–485

    Article  Google Scholar 

  72. Mahmoud SA, Soliman AM (1999) New MOS-C biquad filter using the current feedback operational amplifier. IEEE Trans Circ Syst-I 46:1510–1512

    Article  Google Scholar 

  73. Mahmoud SA, Soliman AM (2000) Novel MOS-C oscillators using the current feedback op-amp. Int J Electron 87:269–280

    Article  Google Scholar 

  74. Manetakis K, Toumazou C (1996) Current-feedback op-amp suitable for CMOS VLSI technology. Electron Lett 32:1090–1092

    Article  Google Scholar 

  75. Soliman AM, Madian AH (2009) MOS-C Tow-Thomas filter using voltage op amp, current feedback op amp and operational transresistance amplifier. J Circ Syst Comput 18:151–179

    Article  Google Scholar 

  76. Schaumann R, Ghausi MS, Laker KR (1990) Design of analog filters: active RC and switched capacitor. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  77. Acar C, Ozoguz S (2000) Nth-order voltage transfer function synthesis using a commercially available active component, CFA: signal-flow graph approach. Frequenz 54:134–137

    Google Scholar 

  78. Rathore TS, Khot UP (2008) CFA-based grounded-capacitor operational simulation of ladder filters. Int J Circ Theor Appl 36:697–716

    Article  Google Scholar 

  79. Said LA, Madian AH, Ismail MH, Soliman AM (2011) Active realization of doubly terminated LC ladder filters using current feedback operational amplifier (CFOA) via linear transformation. Int J Electron Commun (AEU) 65:753–762

    Article  Google Scholar 

  80. Koukiou G, Psychalinos C (2010) Modular filter structures using current feedback operational amplifiers. Radioengineering 19:662–666

    Google Scholar 

  81. Katopodis V, Psychalinos C (2011) Multiple-loop feedback filters using feedback amplifiers. Int J Electron 98:833–846

    Article  Google Scholar 

  82. Mahmoud SA, Awad IA (2005) Fully differential CMOS current feedback operational amplifier. Analog Integr Circ Sign Process 43:61–69

    Article  Google Scholar 

  83. Soliman AM, Madian AH (2009) MOS-C KHN filter using voltage op amp, CFOA, OTRA and DCVC. J Circ Syst Comput 18:733–769

    Article  Google Scholar 

  84. Nandi R, Sanyal SK, Bandyopadhyay TK (2008) Third order lowpass Butterworth filter function realization using CFA. Int J Electron 95:313–318

    Article  Google Scholar 

  85. Fabre A (1995) Comment and reply: Insensitive voltage-mode and current-mode filters from transimpedance op amps. IEE Proc Circ Dev Syst 142:140–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K., Singh, V.K. (2013). Design of Filters Using CFOAs. In: Current Feedback Operational Amplifiers and Their Applications. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5188-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5188-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5187-7

  • Online ISBN: 978-1-4614-5188-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics