Skip to main content

Synthetic Dicer-Substrate siRNAs as Triggers of RNA Interference

  • Chapter
  • First Online:
RNA Interference from Biology to Therapeutics

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 1844 Accesses

Abstract

The first synthetic oligonucleotides used to suppress gene expression in mammalian cells via RNA interference were 21-nucleotide (nt) RNA duplexes having symmetric 2-nt 3′-overhangs and were designed to mimic the natural products of Dicer processing of long RNA substrates. Synthetic RNA duplexes which are longer than 23-nt length are substrates for processing by Dicer and can show increased potency as artificial triggers of RNA interference, particularly at a low concentration. Longer duplexes, however, can have variable cleavage patterns following Dicer processing which can adversely affect potency. Optimized synthetic Dicer substrates are asymmetric duplexes having a 25-nt passenger strand and a 27-nt guide strand with a single 2-nt 3′-overhang on the guide strand and modified bases at the 3′-end of the passenger strand. This modified design results in predictable patterns of Dicer processing and shows improved activity. The development of this design strategy and use of Dicer-substrate RNAs to trigger gene suppression in a variety of systems will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431(7006):338–342

    PubMed  CAS  Google Scholar 

  2. Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457(7228):396–404

    PubMed  CAS  Google Scholar 

  3. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    PubMed  CAS  Google Scholar 

  4. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    PubMed  CAS  Google Scholar 

  5. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    PubMed  CAS  Google Scholar 

  6. Vickers TA, Lima WF, Wu H, Nichols JG, Linsley PS, Crooke ST (2009) Off-target and a portion of target-specific siRNA mediated mRNA degradation is Ago2 ‘Slicer’ independent and can be mediated by Ago1. Nucleic Acids Res 37(20):6927–6941

    PubMed  CAS  Google Scholar 

  7. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    PubMed  CAS  Google Scholar 

  8. Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21(21):5875–5885

    PubMed  CAS  Google Scholar 

  9. Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9(9):673–678

    PubMed  CAS  Google Scholar 

  10. Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP et al (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301(5641): 1921–1925

    PubMed  CAS  Google Scholar 

  11. Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A et al (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6(10):961–967

    PubMed  CAS  Google Scholar 

  12. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744

    PubMed  CAS  Google Scholar 

  13. MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ et al (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311(5758):195–198

    PubMed  CAS  Google Scholar 

  14. MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14(10):934–940

    PubMed  CAS  Google Scholar 

  15. Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19(24):2979–2990

    PubMed  CAS  Google Scholar 

  16. Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6(2):127–138

    PubMed  CAS  Google Scholar 

  17. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620

    PubMed  CAS  Google Scholar 

  18. Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4):621–629

    PubMed  CAS  Google Scholar 

  19. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples MicroRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640

    PubMed  CAS  Google Scholar 

  20. Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3’-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11(6):576–577

    PubMed  CAS  Google Scholar 

  21. Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18(14):1655–1666

    PubMed  CAS  Google Scholar 

  22. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623

    PubMed  CAS  Google Scholar 

  23. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32

    PubMed  CAS  Google Scholar 

  24. Wang B, Li S, Qi HH, Chowdhury D, Shi Y, Novina CD (2009) Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat Struct Mol Biol 16(12): 1259–1266

    PubMed  CAS  Google Scholar 

  25. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    PubMed  CAS  Google Scholar 

  26. Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1):101–112

    PubMed  CAS  Google Scholar 

  27. Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K et al (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16(11):1148–1153

    PubMed  CAS  Google Scholar 

  28. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    PubMed  CAS  Google Scholar 

  29. Chang CI, Kim HA, Dua P, Kim S, Li CJ, Lee DK (2011) Structural diversity repertoire of gene silencing small interfering RNAs. Nucleic Acid Ther 21(3):125–131

    PubMed  CAS  Google Scholar 

  30. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226

    PubMed  CAS  Google Scholar 

  31. Rose SD, Kim DH, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME et al (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33(13):4140–4156

    PubMed  CAS  Google Scholar 

  32. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 36(18):5812–5821

    PubMed  CAS  Google Scholar 

  33. Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP (2003) Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12(3):627–637

    PubMed  CAS  Google Scholar 

  34. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216

    PubMed  CAS  Google Scholar 

  35. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    PubMed  CAS  Google Scholar 

  36. Noland CL, Ma E, Doudna JA (2011) siRNA repositioning for guide strand selection by human Dicer complexes. Mol Cell 43(1):110–121

    PubMed  CAS  Google Scholar 

  37. Hefner E, Clark K, Whitman C, Behlke MA, Rose SD, Peek AS et al (2008) Increased potency and longevity of gene silencing using validated Dicer substrates. J Biomol Tech 19(4):231–237

    PubMed  CAS  Google Scholar 

  38. Eder PS, DeVine RJ, Dagle JM, Walder JA (1991) Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3’ exonuclease in plasma. Antisense Res Dev 1(2):141–151

    PubMed  CAS  Google Scholar 

  39. Kurreck J (2003) Antisense technologies Improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644

    PubMed  CAS  Google Scholar 

  40. Behlke MA (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18(4):305–320

    PubMed  CAS  Google Scholar 

  41. Gaglione M, Messere A (2010) Recent progress in chemically modified siRNAs. Mini Rev Med Chem 10(7):578–595

    PubMed  CAS  Google Scholar 

  42. Krieg AM, Stein CA (1995) Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res Dev 5(4):241

    PubMed  CAS  Google Scholar 

  43. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA et al (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42(26):7967–7975

    PubMed  CAS  Google Scholar 

  44. Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31(2):589–595

    PubMed  CAS  Google Scholar 

  45. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9(9):1034–1048

    PubMed  CAS  Google Scholar 

  46. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ et al (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31(11):2705–2716

    PubMed  CAS  Google Scholar 

  47. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K et al (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13(2):83–105

    PubMed  CAS  Google Scholar 

  48. Choung S, Kim YJ, Kim S, Park HO, Choi YC (2006) Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 342(3):919–927

    PubMed  CAS  Google Scholar 

  49. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A et al (2005) Fully 2’-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48(4):901–904

    PubMed  CAS  Google Scholar 

  50. Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R et al (2005) Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48(13):4247–4253

    PubMed  CAS  Google Scholar 

  51. Kraynack BA, Baker BF (2006) Small interfering RNAs containing full 2’-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA 12(1):163–176

    PubMed  CAS  Google Scholar 

  52. Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10(5):766–771

    PubMed  CAS  Google Scholar 

  53. Morrissey DV, Blanchard K, Shaw L, Jensen K, Lockridge JA, Dickinson B et al (2005) Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41(6):1349–1356

    PubMed  CAS  Google Scholar 

  54. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007

    PubMed  CAS  Google Scholar 

  55. Swayze EE, Siwkowski AM, Wancewicz EV, Migawa MT, Wyrzykiewicz TK, Hung G et al (2007) Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 35(2):687–700

    PubMed  CAS  Google Scholar 

  56. Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y et al (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33(1):439–447

    PubMed  CAS  Google Scholar 

  57. Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A et al (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162

    PubMed  CAS  Google Scholar 

  58. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899

    PubMed  CAS  Google Scholar 

  59. Kubo T, Zhelev Z, Ohba H, Bakalova R (2007) Modified 27-nt dsRNAs with dramatically enhanced stability in serum and long-term RNAi activity. Oligonucleotides 17(4): 445–464

    PubMed  CAS  Google Scholar 

  60. Kubo T, Zhelev Z, Ohba H, Bakalova R (2008) Chemically modified symmetric and asymmetric duplex RNAs: an enhanced stability to nuclease degradation and gene silencing effect. Biochem Biophys Res Commun 365(1):54–61

    PubMed  CAS  Google Scholar 

  61. Turner JJ, Jones SW, Moschos SA, Lindsay MA, Gait MJ (2007) MALDI-TOF mass spectral analysis of siRNA degradation in serum confirms an RNAse A-like activity. Mol Biosyst 3(1):43–50

    PubMed  CAS  Google Scholar 

  62. Collingwood MA, Rose SD, Huang L, Hillier C, Amarzguioui M, Wiiger MT et al (2008) Chemical modification patterns compatible with high potency dicer-substrate small interfering RNAs. Oligonucleotides 18(2):187–200

    PubMed  CAS  Google Scholar 

  63. Nishina K, Unno T, Uno Y, Kubodera T, Kanouchi T, Mizusawa H et al (2008) Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther 16(4):734–740

    PubMed  CAS  Google Scholar 

  64. Rigotti A (2007) Absorption, transport, and tissue delivery of vitamin E. Mol Aspects Med 28(5–6):423–436

    PubMed  CAS  Google Scholar 

  65. Kubo T, Takei Y, Mihara K, Yanagihara K, Seyama T (2012) Amino-modified and lipid-conjugated dicer-substrate siRNA enhances RNAi efficacy. Bioconjug Chem 23(2):164–173

    PubMed  CAS  Google Scholar 

  66. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175

    PubMed  CAS  Google Scholar 

  67. Robbins M, Judge A, Liang L, McClintock K, Yaworski E, Maclachlan I (2007) 2’-O-methyl-modified RNAs Act as TLR7 Antagonists. Mol Ther 15(9):1663–1669

    PubMed  CAS  Google Scholar 

  68. Gantier MP, Williams BR (2007) The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 18(5–6):363–371

    PubMed  CAS  Google Scholar 

  69. Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19(2):89–102

    PubMed  CAS  Google Scholar 

  70. Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D et al (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12(6):988–993

    PubMed  CAS  Google Scholar 

  71. Fedorov Y, King A, Anderson E, Karpilow J, Ilsley D, Marshall W et al (2005) Different delivery methods-different expression profiles. Nat Methods 2(4):241

    PubMed  CAS  Google Scholar 

  72. Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R et al (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24(5):559–565

    PubMed  CAS  Google Scholar 

  73. Behlke MA (2006) Progress towards in vivo use of siRNAs. Mol Ther 13(4):644–670

    PubMed  CAS  Google Scholar 

  74. Rettig GR, Behlke MA (2012) Progress towards in vivo use of siRNAs-II. Mol Ther 20:483–512

    PubMed  CAS  Google Scholar 

  75. Lundberg P, Welander PV, Edwards CK 3rd, van Rooijen N, Cantin E (2007) Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 81(3):1451–1460

    PubMed  CAS  Google Scholar 

  76. Lundberg P, Yang H-J, Jung S-J, Behlke MA, Rose SD, Cantin EM (2012) Protection against TNFα-dependent liver toxicity by intraperitoneal liposome delivered DsiRNA targeting TNFα in vivo. J Control Release 160:194–199

    PubMed  CAS  Google Scholar 

  77. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J (2008) Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther 17(1):162–168

    PubMed  Google Scholar 

  78. Nawroth I, Alsner J, Behlke MA, Besenbacher F, Overgaard J, Howard KA et al (2010) Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFalpha prevents radiation-induced fibrosis. Radiother Oncol 97(1):143–148

    PubMed  CAS  Google Scholar 

  79. Dore-Savard L, Roussy G, Dansereau MA, Collingwood MA, Lennox KA, Rose SD et al (2008) Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther 16(7):1331–1339

    PubMed  CAS  Google Scholar 

  80. LaCroix-Fralish ML, Mo G, Smith SB, Sotocinal SG, Ritchie J, Austin JS et al (2009) The beta3 subunit of the Na+, K  +  -ATPase mediates variable nociceptive sensitivity in the formalin test. Pain 144(3):294–302

    PubMed  CAS  Google Scholar 

  81. Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y et al (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26(4):431–442

    PubMed  CAS  Google Scholar 

  82. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27(10):925–932

    PubMed  CAS  Google Scholar 

  83. Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H et al (2011) An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3(66):66ra6

    PubMed  Google Scholar 

  84. Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD et al (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19(12):2228–2238

    PubMed  CAS  Google Scholar 

  85. Amarzguioui M, Lundberg P, Cantin E, Hagstrom JE, Behlke MA, Rossi JJ (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1(2):508–517

    PubMed  CAS  Google Scholar 

  86. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO et al (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4):476–484

    PubMed  CAS  Google Scholar 

  87. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522):546–549

    PubMed  CAS  Google Scholar 

  88. Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19(3):209–222

    PubMed  CAS  Google Scholar 

  89. Zhou J, Rossi JJ (2010) Aptamer-targeted cell-specific RNA interference. Silence 1(1):4

    PubMed  Google Scholar 

  90. Syed MA, Pervaiz S (2010) Advances in aptamers. Oligonucleotides 20(5):215–224

    PubMed  CAS  Google Scholar 

  91. Zhou J, Li H, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16(8):1481–1489

    PubMed  CAS  Google Scholar 

  92. Zhou J, Swiderski P, Li H, Zhang J, Neff CP, Akkina R et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37(9):3094–3109

    PubMed  CAS  Google Scholar 

  93. Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340

    PubMed  CAS  Google Scholar 

  94. Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6(9):1130–1146

    PubMed  CAS  Google Scholar 

  95. De Paula D, Bentley MV, Mahato RI (2007) Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA 13(4):431–456

    PubMed  Google Scholar 

  96. de Fougerolles AR (2008) Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 19(2):125–132

    PubMed  Google Scholar 

  97. Howard KA, Kjems J (2007) Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert Opin Biol Ther 7(12):1811–1822

    PubMed  CAS  Google Scholar 

  98. Howard KA (2009) Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 61(9):710–720

    PubMed  CAS  Google Scholar 

  99. Tseng YC, Mozumdar S, Huang L (2009) Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 61(9):721–731

    PubMed  CAS  Google Scholar 

  100. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668

    PubMed  CAS  Google Scholar 

  101. Eguchi A, Dowdy SF (2009) siRNA delivery using peptide transduction domains. Trends Pharmacol Sci 30(7):341–345

    PubMed  CAS  Google Scholar 

  102. Jarver P, Mager I, Langel U (2010) In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci 31(11):528–535

    PubMed  Google Scholar 

  103. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49(19):3280–3294

    PubMed  CAS  Google Scholar 

  104. Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2011) Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta 1810(3):317–329, Epub 2010/05/25

    PubMed  CAS  Google Scholar 

  105. Peer D, Lieberman J (2011) Special delivery: targeted therapy with small RNAs. Gene Ther 18(12):1127–1133

    PubMed  CAS  Google Scholar 

  106. Sanghvi YS, Schulte M (2004) Therapeutic oligonucleotides: the state-of-the-art in purification technologies. Curr Opin Drug Discov Devel 7(6):765–776

    PubMed  CAS  Google Scholar 

  107. Tedebark U, Scozzari A, Werbitzky O, Capaldi D, Holmberg L (2011) Industrial-scale manufacturing of a possible oligonucleotide cargo CPP-based drug. Methods Mol Biol 683:505–524, Epub 2010/11/06

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kim Lennox for critical reading of the manuscript and Dr. Joe Dobosy for assistance with the figures. We further thank Dr. John Rossi, Dr. Dongho Kim, and all members of the research laboratories at Integrated DNA Technologies for their contributions towards the development of the Dicer-substrate siRNA technology.

Conflict of Interest Statement

MAB and SDR are employed by Integrated DNA Technologies (IDT), which sells compounds similar to those described herein. IDT is, however, not a publicly traded company, and the authors do not hold any stock or equity in IDT. MAB is a scientific cofounder of Dicerna Pharmaceuticals and is a member of their Scientific Advisory Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Behlke MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Controlled Release Society

About this chapter

Cite this chapter

Rose, S.D., Behlke, M.A. (2013). Synthetic Dicer-Substrate siRNAs as Triggers of RNA Interference. In: Howard, K. (eds) RNA Interference from Biology to Therapeutics. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4744-3_2

Download citation

Publish with us

Policies and ethics