Skip to main content

Microbial Electrolysis: Novel Biotechnology for Hydrogen Production from Biomass

  • Chapter
  • First Online:
Microbial Technologies in Advanced Biofuels Production

Abstract

Driven by the world-wide energy crisis, global interest in hydrogen production ­continues to increase. Currently, over 95% of the hydrogen supply in the USA is derived from nonrenewable materials, including coal, oil, and natural gas. Remediation of environmental stress related to fossil fuel use requires hydrogen production from renewable energy sources, such as solar, wind, and biomass. A recently invented microbial electrolysis technology demonstrates a new avenue for sustainable hydrogen production from renewable biomass. It has potential to become an economically feasible approach for hydrogen production due to its high hydrogen yield compared to fermentative hydrogen production and much lower energy requirement (about 10% in theory) compared to hydrogen production via water electrolysis. In this chapter, we begin with an introduction of microbial electrolysis cells (MECs) and the stoichiometry and energetics, followed by a section on the microorganisms in MECs and their plausible electron transfer mechanisms. The state-of-art designs, operation, and evaluation of MECs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189

    Article  PubMed  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM et al (2002) Electrodereducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  PubMed  CAS  Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  PubMed  CAS  Google Scholar 

  • Call D, Merrill M, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells (MECs). Environ Sci Technol 43(6):2179–2183

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Logan BE (2007a) Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS 104(47):18871–18873

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Logan BE (2007b) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Article  Google Scholar 

  • Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J hydrogen energ 32(13):2296–2304

    Article  CAS  Google Scholar 

  • Fan Y, Hu H, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41(23):8154–8158

    Article  PubMed  CAS  Google Scholar 

  • Gil GC, Chang IS, Kim BH et al (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  PubMed  CAS  Google Scholar 

  • Gorby YA, Yanina S, Malean JS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103:11358–11363

    Article  PubMed  CAS  Google Scholar 

  • Holmes DE, Nicoll JS, Bond DR et al (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae Geopsychrobacter electrodiphilus gen nov sp nov in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Fan Y, Liu H (2009) Hydrogen production in microbial electrolysis cells using precious-metal-free cathode catalysts. Int J hydrogen energy 34:8535–8542

    Google Scholar 

  • Kim HJ, Hyun MS, Chang IS et al (1999) A fuel cell type lactate biosensor using a metal reducing bacterium Shewanella putrefaciens. J Microbiol Biotechnol 9:365–367

    CAS  Google Scholar 

  • Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • Kim JR, Cheng S, Oh S-E, Logan BE (2007) Power generation using different cation anion and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  • Lide DR (1995) CRC handbook of chemistry and physics, 76th edn. CRC, Boca Raton

    Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–320

    Article  PubMed  CAS  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  PubMed  CAS  Google Scholar 

  • Logan BE, Aelterman P, Hamelers B et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  PubMed  CAS  Google Scholar 

  • Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    Article  PubMed  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4: 497–508

    Article  PubMed  CAS  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefacians MR-1. J Bacteriol 174:3429–3438

    PubMed  CAS  Google Scholar 

  • Park HS, Kim BH, Kim HS et al (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Pham CA, Jung SJ, Phung NT et al (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134

    Article  PubMed  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  PubMed  CAS  Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408

    Article  PubMed  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195

    Article  PubMed  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Buisman CJN (2006a) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    Article  PubMed  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW et al (2006b) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31:1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Molenkamp RJ et al (2007) Performance of single chamber ­biocatalyzed electrolysis with different types of ion exchange membrances. Water Res 41:1984–1994

    Article  PubMed  CAS  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM et al (2008a) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  PubMed  CAS  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM et al (2008b) Effect of the type of ion exchange membrane on performance ion transport and pH in biocatalyzed electrolysis of wastewater. Water Sci Technol 57:1757–1762

    Article  PubMed  CAS  Google Scholar 

  • Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources. doi:101016/jjpowsour200812144 DOI:dx.doi.org

  • Tartakovsky B, Manuel MF, Wang H et al (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energ 34:672–677

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Rittmann BE (2007) Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 77:689–697

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, H., Hu, H. (2012). Microbial Electrolysis: Novel Biotechnology for Hydrogen Production from Biomass. In: Hallenbeck, P. (eds) Microbial Technologies in Advanced Biofuels Production. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1208-3_6

Download citation

Publish with us

Policies and ethics