Skip to main content

Quantum Field Theory and Cosmology

  • Chapter
Fundamental Interactions

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 85))

Abstract

Experimental evidence points with ever increasing confidence towards an evolutionary cosmology. The standard framework used to confront this circumstance is the “hot big bang” theory: an initial classical singularity, possibly smeared by unknown quantum effects, produces a thermal distribution of the quanta of the matter field at a temperature close to the Planck temperature (Tp ≃ 1019 Gev). This state then leads to an approximatively adiabatic free expansion. The model explains the background 2.7°K radiation observed in the presently expanding universe. It predicts, when combined with the known weak interaction physics, a primordial helium abundance in remarkable agreement with experimental data. More recently, the embedding of grand unified gauge theories in the big-bang cosmology has led to a plausible qualitative understanding of the small baryon to photon ratio in our universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Casher and F. Englert, Phys. Lett. 104B (1981), 117

    ADS  Google Scholar 

  2. A. Casher and F. Englert, “Quantum cosmology and quantum gravity” in preparation.

    Google Scholar 

  3. R.H. Dicke, P.J.E. Peebles, P.G. Roll and D.T. Wilkinson, Ap. J. 142 (1965), 414.

    Article  ADS  Google Scholar 

  4. A.A. Penzias and R. W. Wilson, Ap. J. 142 (1965), 419.

    Article  ADS  Google Scholar 

  5. For a review of observational data, see G.A. Tamman, A. Sandage and A. Yahil, Physical Cosmology Les Houches Session XXXII (North-Holland Publishing Co, Amsterdam) (1980) and references therein.

    Google Scholar 

  6. J. Ellis, Lectures presented at the 21st Scottish Summer School, ref. TH 2942-CERN (1980) and references therein.

    Google Scholar 

  7. P.J.E. Peebles, Ap. J. 146 (1966), 542.

    Article  ADS  Google Scholar 

  8. J. Yang, D.N. Schramm, G. Steigman and R.T. Rood, Ap. J. 227, (1979), 697.

    Article  ADS  Google Scholar 

  9. Ya. B. Zeldovich, Zh. Eksp. Theor. Fiz. 48 (1965), 986.

    Google Scholar 

  10. J.C. Pati and A. Salam, Phys. Rev. Lett. 31 (1973) 661

    Article  ADS  Google Scholar 

  11. J.C. Pati and A. Salam Phys. Rev. D8 (1973) 1240

    ADS  Google Scholar 

  12. J.C. Pati and A. Salam Phys. Rev.D10 (1974), 275.

    ADS  Google Scholar 

  13. H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 (1974), 438.

    Article  ADS  Google Scholar 

  14. H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, (1974), 451.

    Article  ADS  Google Scholar 

  15. For more recent developments, see reference 4.

    Google Scholar 

  16. F. Englert and R. Brout, Phys. Rev. Lett. L3 (1964), 321.

    Article  MathSciNet  ADS  Google Scholar 

  17. P.W. Higgs, Phys. Rev. Lett. 12 (1964), 132

    Article  MathSciNet  Google Scholar 

  18. P.W. Higgs Phys. Rev. Lett. 13 (1964), 508.

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Yoshimura, Phys. Rev. Lett. 41 (1978), 381.

    Article  ADS  Google Scholar 

  20. M. Yoshimura, Phys. Rev. Lett. E 42 (1976); 746.

    ADS  Google Scholar 

  21. S. Dimopoulos, L. Susskind, Phys. Rev. D18 (1978), 4500

    ADS  Google Scholar 

  22. D. Toussaint, S.B. Treiman, F. Wilczek and A. Zee, Phys. Rev. D19 (1979), 1036

    Google Scholar 

  23. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Phys. Lett. 80B (1979), 360.

    ADS  Google Scholar 

  24. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Phys. Lett. E 82B (1979), 464.

    Google Scholar 

  25. S. Weinberg, Phys. Rev. Lett. 42 (1979), 850

    Article  ADS  Google Scholar 

  26. A.D. Sakharow, Zh. Eksp. Theor. Fiz. 76 (1979), 1172

    ADS  Google Scholar 

  27. S. Dimopoulos and L. Susskind, Phys. Lett. 81B (1979), 416

    Article  Google Scholar 

  28. M. Yoshimura, Phys. Lett. 88B (1979), 294.

    Google Scholar 

  29. R. Brout, F. Englert and E. Gunzig, G.R.G. 10 (1979), 1.

    Google Scholar 

  30. The quantitative solution discussed in section III.1 has been achieved by R. Brout, F. Englert and P. Spindel, Phys. Rev. Lett. 43 (1979), 417; E 43 (1979), 890

    Article  MathSciNet  ADS  Google Scholar 

  31. For a detailed analysis of the quantum effects in the model, see R. Brout, F. Englert, J.-M. Frère, E. Gunzig, P. Nardone, C. Truffin and P. Spindel, Nucl. Phys. B170 (F.S.1) (1980), 228

    Article  ADS  Google Scholar 

  32. A summary of this work can be found in F. Englert, Physical Cosmology, Les Houches Session XXXII (North Holland Publishing Co. Amsterdam) (1980).

    Google Scholar 

  33. Study of particle creation from cosmological expansion was initiated by L. Parker, Phys. Rev. 183 (1969), 1057.

    Article  ADS  MATH  Google Scholar 

  34. For further developments, see L. Parker “The production of elementary particles by strong gravitational fields” Proceedings of the Symposium on Asymptotic Properties of Space-Time (Plenum New York) (1977) and references therein.

    Google Scholar 

  35. P. Spindel, “Mass formula in a cosmological model”, Mons University preprint (1981); to be published in Phus. Lett. B

    Google Scholar 

  36. S.W. Hawking, Nature 248 (1974), 30.

    Article  ADS  Google Scholar 

  37. S.W. Hawking, Comm. Math. Phys. 43 (1975), 199.

    Article  MathSciNet  ADS  Google Scholar 

  38. W. Unruh, Phys. Rev. D14 (1976), 870.

    ADS  Google Scholar 

  39. B.S. De Witt, Phys. Reports 19 (1975), 295.

    Article  ADS  Google Scholar 

  40. J.D. Bekenstein, Phys. Rev. D12 (1975), 3077.

    MathSciNet  ADS  Google Scholar 

  41. S.W. Hawking, Phys. Rev. D13 (1976), 191.

    MathSciNet  ADS  Google Scholar 

  42. G. Birkhoff, Relativity and Modern Physics, (Harvard University Press, Cambridge, Mass. (1923)).

    MATH  Google Scholar 

  43. G.W. Gibbons and S.W. Hawking, Phys. Rev. D15 (1977), 2738.

    MathSciNet  ADS  Google Scholar 

  44. The idea that the universe could originate in a quantum fluctuation was proposed by E.P. Tryon, Nature 246 (1973), 396, who envisaged a global quantum effect. The possibility of generating a universe from a local quantum fluctuation which is used here was the basic motivation of reference 11.

    Article  ADS  Google Scholar 

  45. In reference 11, the compatibility of an initial local fluctuation with the existence of an unbounded universe required the assumption of an unexplained phase transition. Tentative ways of avoiding this phase transition in the context of an unbounded universe have been recently proposed by J.R. Gott III, Nature (1981)

    Google Scholar 

  46. D. Atkatz and H. Pagels “The origin of the universe as a quantum tunneling event”, Rockefeller University preprint RU 81/B/2 (1981).

    Google Scholar 

  47. It is interesting to note that curvatures k/a2 yield thermal distributions for massless particles with a temperature T = l/2πa. This comes about if k = - 1 from a coordinate transformation effect 11) 12) and for k = + 1 from a Casimir effect which is in fact equivalent to a thermal distribution 12). As for a ≃ τ this temperature is precisely what is required to seize black hole formation by the self-consistent process, the formation of a universe from the metric fluctuation at the scale ain ≃ τ appears indeed “natural”.

    Google Scholar 

  48. To our knowledge the idea that the arrow of time may fluctuate is due to Y. Aharonov (private communication).

    Google Scholar 

  49. This structure is reminiscent of “foams” discussed by C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman and Co, San Francisco) (1973);

    Google Scholar 

  50. S.W. Hawking “The path integral approach to quantum gravity” published in General Relativity (Cambridge University Press, ed. S.W. Hawking and W. Israel) (1979)

    Google Scholar 

  51. S.W. Hawking, Phys. Rev. D14 (1976), 2460.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Englert, F. (1982). Quantum Field Theory and Cosmology. In: Lévy, M., Basdevant, JL., Speiser, D., Weyers, J., Jacob, M., Gastmans, R. (eds) Fundamental Interactions. NATO Advanced Study Institutes Series, vol 85. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3551-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3551-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3553-5

  • Online ISBN: 978-1-4613-3551-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics