Skip to main content

Polyploidy in Plants: Unsolved Problems and Prospects

  • Chapter
Polyploidy

Part of the book series: Basic Life Sciences ((BLSC,volume 13))

Abstract

The papers that have been presented at the present synposium provide in themselves ample evidence that problems connected with Polyploidy are of prime importance for understanding the evolution not only of most plants, but also of many groups of animals. Although chromosome doubling as a tool for plant breeders has become much reduced in importance during recent years, its revival may become practical as more becomes known and understood about the reasons why this process has been of great importance for the origin of species in nature (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dewey, D.R., 1980, Some applications and misapplications of induced Polyploidy to plant breeding. This volume, p. 445.

    Google Scholar 

  2. Raven, P.H., Thompson, H.J., 1964, Haploidy and angiosperm evolution. Amer. Nat. 68: 251 - 252.

    Article  Google Scholar 

  3. deWet, J.M.J., 1968, Diploid-tetraploid-haploid cycles and the origin of variability in Dichanthium agamospecies. Evolution 22: 394 - 397.

    Article  Google Scholar 

  4. deWet, J.M.J., 1971, Reversible tetraploidy as an evolutionary mechanism. Evolution 25: 545 - 548.

    Article  Google Scholar 

  5. Simpson, G.G., 1953, “The Major Features of Evolution,” Columbia University Press, New York.

    Google Scholar 

  6. Bingham, E.T., 1980, Maximizing heterozygosity in autotetraploids. This volume, p. 471.

    Google Scholar 

  7. Stebbins, G.L., 1949, The evolutionary significance of natural and artificial polyploids in the family Gramineae. Proc. 8th Inter. Congr. Genet, Hereditas, Suppl. Vol.: 461- 485.

    Google Scholar 

  8. Tal, M., 1980, Physiology of Polyploids. This volume, p. 61.

    Google Scholar 

  9. Stebbins, G.L., 1971, “Chromosomal Evolution in Higher Plants,” Edward Arnold, London.

    Google Scholar 

  10. Kihara, H., Ono, T., 1926, Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschr. Zellforsch. 4: 475- 481.

    Google Scholar 

  11. Cronquist, A., 1978, Once again: what is a species?, pp. 3- 20, “Biosystematics in Agriculture,” Beltsville Symp. Agr. Reg. 2, Allenheld, Osmuth And Co., Montclair, NJ.

    Google Scholar 

  12. Snyder, L.A., 1951, Cytology of inter-strain hybrids and the probable origin of variability in Elymus glaucus. Amer. J. Bot. 38: 195 - 202.

    Article  Google Scholar 

  13. Hiesey, W.M., Nobs, M.A., Bjorkman, 0., 1971, Experimental studies on the nature of species V. Biosystematics, Genetics, and physiological ecology of the Erythranthe section of the genus Mimulus. Carnegie Inst. Wash. Publ. 628, Washington, D.C.

    Google Scholar 

  14. deWet, J.M.J., 1980, Origins of Polyploids. This volume, p. 3.

    Google Scholar 

  15. Wagner, W.H., Jr., Wagner, F.S., 1980, Polyploid pteridophytes. This volume, p. 199.

    Google Scholar 

  16. Stebbins, G.L., Vaarama, A., 1954, Artificial and natural hybrids in the Gramineae, Tribe Hordeae. VII, Hybrids and allopolyploids between Elymus glaucus and Sitanion jubatum. Genetics 39: 379 - 395.

    Google Scholar 

  17. Riley, R., Chapman, V., 1958, Genetic control of the cyto- logically diploid behavior of hexaploid wheat. Nature 182: 713 - 715.

    Article  Google Scholar 

  18. Stebbins, G.L., 1950, “Variation and Evolution in Plants,” Columbia University Press, New York.

    Google Scholar 

  19. Brittain, W.H., Grant, W.F., 1965, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. I. papyrifera in eastern Canada, Ganad. Field-Nat. 79: 189- 197.

    Google Scholar 

  20. Brittain, W.H,, Grant, W.F,, 1965, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. II. papyrifera var. cordifolia. Ganad. Field-Nat. 79: 253 - 257.

    Google Scholar 

  21. Brittain, W.H., Grant, W.F., 1967, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. V.B. papyrifera andB. cordifolia from eastern Canada. Ganad. Field-Nat. 81: 251-262,

    Google Scholar 

  22. Brittain, W.H., Grant, W.F., 1969, Observations on Canadian birch (Betula) collections at the Morgan Arboretum. VIII, Betula from Grant Manan Island, New Brunswick, Canad, Field-Nat, 83: 361 - 383.

    Google Scholar 

  23. Titz, W., 1972, Evolution of the Arabis hirsuta group in Central Europe. Taxon 21: 121 - 128.

    Article  Google Scholar 

  24. Fisher, F., Rowley, J.A., Marchant, C., 1973, The biogeography of the western snow-patch Ranunculi of North America. C.R. Soc. Biogeogr. 438: 32 - 43.

    Google Scholar 

  25. Miller, J.M., 1979, Phenotypic variation in diploid and tetraploid populations of Claytonia perfoliata s.I. (Portulacaceae). Syst. Bot. (in press).

    Google Scholar 

  26. Ratter, J,R,, 1976, Cytogenetic studies in Spergularia IX. Summary and Conclusions. Notes Roy. Bot. Gard. (Edinburgh) 34: 411 - 428.

    Google Scholar 

  27. Baldwin, J.T., Jr., 1941, Galax: the genus and its chromosomes. J. Heredity 32: 249 - 254.

    Google Scholar 

  28. Nesan, G., unpublished data.

    Google Scholar 

  29. Small. E., 1968, The systematics of autotetraploidy in Epiloblum latifolium (Onagraceae). Brittonia 20: 169 - 181.

    Article  Google Scholar 

  30. Mosquin, T., Small. E., 1971, An example of parallel evolution in Epilobium (Onagraceae). Evolution 25: 678 - 682.

    Google Scholar 

  31. Bâcher, T.W., 1962, A cytological and morphological study of the species hybrid Chamaenerion angustifolium x C. latifolium. Bot. Tidsskr. 58: 1 - 34.

    Google Scholar 

  32. Ehrendorfer, F., 1980, Polyploidy and distribution. This volume, p. 45.

    Google Scholar 

  33. Crosby, M.R., 1980, Polyploidy in bryophytes. This volume, p. 193.

    Google Scholar 

  34. Maniotis, J., 1980, Polyploidy in fungi. This volume, p. 163.

    Google Scholar 

  35. Nichols, H.W., 1980, Polyploidy in algae. This volume, p. 151.

    Google Scholar 

  36. Schultz, R.J., 1980, Role of Polyploidy in the evolution of fishes. This volume, p. 313.

    Google Scholar 

  37. Goldblatt, P., 1980, Polyploidy in angiosperms: monocotyledons. This volume, p. 219.

    Google Scholar 

  38. Stebbins, G.L., 1974, “Flowering Plants: Evolution above the Species Level,” Harvard University Press, Cambridge, MA.

    Google Scholar 

  39. Fedorov, A.N. (ed.), 1969, “Chromosome Numbers of Flowering Plants,” Acad. Sci. USSR Komarov Bot. Inst., Leningrad.

    Google Scholar 

  40. Cronquist, A., 1955, Phylogeny and taxomony of the Compositae. Amer. Midi. Nat. 53: 478 - 511.

    Article  Google Scholar 

  41. Al-Shebaz, I.A., 1973, The biosystematics of the genus Thelypodium. Contr. Gray Herb. Harvard Univ. 204: 3 - 148.

    Google Scholar 

  42. Constance, L., 1963, Chromosome number and classification in Hydrophyllaceae. Brittonia 15: 273 - 285.

    Article  Google Scholar 

  43. Stebbins, G.L., 1980, Major trends of evolution in the Gramineae and their possible significance (in press).

    Google Scholar 

  44. Grant V., 1969, “Natural History of the Phlox Family,” M. Nijhoff, The Hague.

    Google Scholar 

  45. Babcock, E.B., 1947, “The Genus Crepis,” Univ. Calif. Publ. Bot., Vols. 21, 22.

    Google Scholar 

  46. Stebbins, G.L., 1939, Notes on the systematic relationships of the Old World species and of some horticultural forms of the genus Paeonia. Univ. Calif. Publ. Bot. 19: 245 - 266.

    Google Scholar 

  47. Vickery, R.K., Jr., Eldridge, F.A., II, McArthur, E.D., 1976, Cytogenetic patterns of evolutionary divergence in the Mimulus glabratus complex. Amer. Midi. Nat. 95: 377 - 389.

    Article  Google Scholar 

  48. Heckard, L.R., 1960, Taxonomic studies in the Phacelia magellanica—polyploid complex with special reference to the California members. Univ. Calif. Publ. Bot. 32: 1 - 126.

    Google Scholar 

  49. MacArthur, R.H., Wilson, E.O., 1967, “The Theory of Island Geography,” Princeton Univ. Press, Princeton, NJ, p. 149; Pianka, E., 1978, “Evolutionary Ecology,” 2nd ed., p. 122.

    Google Scholar 

  50. Axelrod, D.I., 1976, History of the coniferous forests, California and Nevada. Univ. Calif. Publ. Bot. 70: 1 - 62.

    Google Scholar 

  51. Miki, S., Hikita, S., 1951, Probable chromosome number of fossil Sequoia and Metasequoia found in Japan. Science 113: 3 - 4.

    Article  PubMed  CAS  Google Scholar 

  52. Takhtajan, A. (ed.), 1974, “Fossil Flowering Plants of the USSR,” Vol. 1. “Nauk” Publ., Leningrad.

    Google Scholar 

  53. Hickey, L.J., Doyle, J.A., 1977, Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev. 43: 3 - 104.

    Article  Google Scholar 

  54. Raven, P., Axelrod, D.I., 1977, Origin and relationships of the California flora. Univ. Calif. Publ. Bot. 72: 1 - 134.

    Google Scholar 

  55. Lokki, J., Saura, A., 1980, Polyploidy in insect evolution. This volume, p. 277.

    Google Scholar 

  56. Bogart, J.P., 1980, Evolutionary implications of Polyploidy in amphibians and reptiles. This volume, p. 341.

    Google Scholar 

  57. Ostenfeld, C.H., 1910, Further studies on the apogamy and hybridization of the Hieracia. Zeitschr. Ind. Abst. Verebungsl. 3: 241 - 285.

    Article  Google Scholar 

  58. Stebbins, G.L., 1932, Cytology of Antennaria. I. Normal species. Bot. Gaz. 94: 134 - 151.

    Article  Google Scholar 

  59. Milntzing, A., MUntzing, G., 1941, Some new results concerning apomixis, sexuality and polymorphism in Potentilla. Bot. Not. ( Lund ): 237 - 278.

    Google Scholar 

  60. Stebbins, G.L., Bayer, R, unpublished data.

    Google Scholar 

  61. White, M.J.D., 1978, “Modes of Speciation,” W.H. Freeman, San Francisco.

    Google Scholar 

  62. Stebbins, G.L., 1958, The inviability, sterility and weakness of interspecific hybrids. Adv. Genetics 9: 147 - 215.

    Article  CAS  Google Scholar 

  63. Darlington, C.D., 1939, “The Evolution of Genetic Systems,” Cambridge Univ. Press, Cambridge.

    Google Scholar 

  64. Stebbins, G.L., 1960, The comparative evolution of genetic systems, pp. 197-226, to Tax, S. (ed.), “Evolution after Darwin,” 1, University of Chicago Press, Chicago.

    Google Scholar 

  65. Grell, K.G., 1953, Die Chromosomen von Aulacantha scolymantha. Haeckel. Arch. Protistenk. 99: 1 - 54.

    Google Scholar 

  66. MacKinnon, D.L., Hawes, R.S.D., 1961, “An Introduction to the Study of Protozoa,” Clarendon Press, Oxford.

    Google Scholar 

  67. Godward, M.B.E. (ed.), 1966, “The Chromosomes of the Algae,” St. Martin’s Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Stebbins, G.L. (1980). Polyploidy in Plants: Unsolved Problems and Prospects. In: Lewis, W.H. (eds) Polyploidy. Basic Life Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3069-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3069-1_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3071-4

  • Online ISBN: 978-1-4613-3069-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics