Skip to main content

Collision-Induced Dissociation II: Trajectories and Models

  • Chapter
Atom - Molecule Collision Theory

Abstract

In this chapter we treat collision-induced dissociation (CID) within the framework of classical mechanics. Such an approach is of great practical use not only in the calculation of CID cross sections for their own sake, but also in the fields of hot-atom chemistry, high-energy molecular beam reactions, electron recombination and detachment, and charge transfer, where CID, although not the main process of interest, is present alongside other processes and must be properly taken into account. Indeed, CID cannot be treated independently of other product channels, since dissociation competes with these as soon as the collision energy increases beyond the dissociation threshold. A decent CID calculation must treat this competition adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.T.V. Kung and J.B. Anderson, Phase-space theory of atomic dissociation and recombination reactions, J. Chem. Phys. 60, 3731–3743 (1974).

    Article  CAS  Google Scholar 

  2. R.A. LaBudde, P.J. Kuntz, R.B. Bernstein, and R.D. Levine, Classical trajectory study of the K + CH3I reaction, J. Chem. Phys. 59, 6286–6298 (1973).

    Article  CAS  Google Scholar 

  3. T. Valencich and D.L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CH5, J. Chem. Phys. 61, 21–29 (1974).

    Article  CAS  Google Scholar 

  4. A.G. Clarke and G. Burns, Trajectory studies of atomic recombination reactions, J. Chem. Phys. 55, 4717–4730 (1971).

    Article  CAS  Google Scholar 

  5. A. Gelb, R. Kapral, and G. Burns, Nonequilibrium effects in atomic recombination reactions, J. Chem. Phys. 56, 4631–4635 (1972).

    Article  CAS  Google Scholar 

  6. A.G. Clarke and G. Burns, Trajectory studies of atomic recombination. II, J. Chem. Phys. 56, 4636–4645 (1972).

    Article  CAS  Google Scholar 

  7. A.G. Clarke and G. Burns, Trajectory studies of atomic recombination reactions. III, J. Chem. Phys. 58, 1908–1913 (1973).

    Article  CAS  Google Scholar 

  8. W.H. Wong and G. Burns, Trajectory studies of atomic recombination of I atoms. IV, J. Chem. Phys. 58, 4495–4467 (1973).

    Google Scholar 

  9. W.H. Wong and G. Burns, Trajectory studies of atomic recombination reactions. V, J. Chem. Phys. 59, 2974–2976 (1973).

    Article  CAS  Google Scholar 

  10. A. Jones and J.L.J. Rosenfeld, Monte Carlo simulation of H-atom recombination, in Abstracts of VII International Conference on the Physics of Electronic and Atomic Collisions, North Holland, Amsterdam (1971), p. 314.

    Google Scholar 

  11. M. Karplus, R.N. Porter, and R.D. Sharma, Energy dependence of cross sections for T + H2, T + D2 collisions, J. Chem. Phys. 45, 3871–3873 (1966).

    Article  CAS  Google Scholar 

  12. G.R. North and J.J. Leventhal, Classical superposition phenomena in H2+ (v = 0)-He reactive collisions, Chem. Phys. Lett. 23, 600–602 (1973).

    Article  CAS  Google Scholar 

  13. G.R. North, H.H. Harris, J.J. Leventhal, and P.B. James, Model for H2+ (v = 0)-He collisions above 2 eV, J. Chem. Phys. 61, 5060 H2+5065 (1974).

    Google Scholar 

  14. D.J. Malcolme-Lawes, Hydrogen isotopic exchange reactions at high energies, J. Chem. Soc. Faraday Trans. 2 71, 1183–1199 (1975).

    Google Scholar 

  15. J.T. Muckerman, Classical dynamics of hot atom reactions of F with HD, J. Chem. Phys. 57, 3388–3396 (1972).

    Article  CAS  Google Scholar 

  16. P.A. Whitlock, J.T. Muckerman, and R.E. Roberts, Classical mechanics of recombination H + H + M → H2 + M, J. Chem. Phys. 60, 3658–3673 (1974).

    Article  CAS  Google Scholar 

  17. R.K. Preston and J.S. Cohen, Chemi-ionization in atom-diatomic collisions, J. Chem. Phys. 65, 1589–1590 (1976).

    Article  CAS  Google Scholar 

  18. J.R. Krenos, R.K. Preston, R. Wolfgang, and J.C. Tully, Molecular beam and trajectory studies of H+ + H2, J. Chem. Phys. 60, 1634–1659 (1974).

    Article  CAS  Google Scholar 

  19. R.K. Preston and R.J. Cross, Jr., Charge exchange and chemical reaction: D2+ + H, J. Chem. Phys. 59, 3616–3622 (1973).

    Article  CAS  Google Scholar 

  20. R.E. Howard, R.E. Roberts, and M.J. Delle Donne, 3-body effects in exchange and dissociation encounters for Ar + Ar2, J. Chem. Phys. 65, 3067–3074 (1976).

    Article  CAS  Google Scholar 

  21. N.C. Blais and D.G. Truhlar, Trajectory study of Ar + H2 collisions. I, J. Chem. Phys. 65, 5335–5356 (1970).

    Article  Google Scholar 

  22. N.C. Blais and D.G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. II, J. Chem. Phys. 66, 772–778 (1977).

    Article  CAS  Google Scholar 

  23. N.J. Brown and R.J. Munn, Molecular dynamics: The dissociation of H2 by He, J. Chem. Phys. 56, 1983–1987 (1972).

    Article  CAS  Google Scholar 

  24. A. Gelb, R. Kapral, and G. Burns, Dissociation of vibrationally-rotationally excited I2(B3IIOu+), J. Chem. Phys. 59, 2980–2985 (1973).

    Google Scholar 

  25. W.H. Wong and G. Burns, Dynamics of dissociation of diatomic molecules and mass effect, J. Chem. Phys. 62, 1712–1713 (1975).

    Article  CAS  Google Scholar 

  26. C. Evers, Trajectory surface hopping study of M + I2 collisions (M = Na, K, Cs), J. Chem. Phys. 21, 355–371 (1977).

    CAS  Google Scholar 

  27. B. Garetz, M. Rubinson, and J.I. Steinfeld, Classical trajectory surface hopping applied to CID, Chem. Phys. Lett. 28, 120–124 (1974).

    Article  CAS  Google Scholar 

  28. R.N. Porter and L.M. Raff, Classical trajectory methods in molecular collisions, in Dynamics of Molecular Collisions, Part B, W. H. Miller, editor, Plenum Press, New York (1976), Chap. 1.

    Google Scholar 

  29. R.N. Porter, Molecular trajectory calculations, Ann. Rev. Phys. Chem. 25, 317–355 (1974).

    Article  CAS  Google Scholar 

  30. A.F. Wagner and E.K. Parks, A classical statistical theory for chemical reactions, J. Chem. Phys. 64, 4343–4361 (1976).

    Article  Google Scholar 

  31. D.E. Stogryn and J.O. Hirschfelder, Contribution of bound, metastable, and free molecules to the second virial coefficient, J. Chem. Phys. 31, 1534–1545 (1959).

    Google Scholar 

  32. J.C. Tully, Nonadiabatic processes in molecular collisions, in Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), Chap. 5.

    Google Scholar 

  33. E.K. Parks, N.J. Hansen, and S. Wexler, Collision-induced ion pair formation of thallium halides, J. Chem. Phys. 58, 5489–5501 (1973).

    Article  CAS  Google Scholar 

  34. P.J. Kuntz and W.N. Whitton, Interpretation of CID charge-transfer processes in rare-gas molecule-ions, Chem. Phys. 16, 301–310 (1976).

    Article  CAS  Google Scholar 

  35. A. Henglein, Stripping effects in ion-molecule reactions, in Ion-Molecule Reactions in the Gas Phase, Vol. 58 of Advances in Chemistry Series, R.F. Gould, editor, American Chemical Society, Washington D.C. (1966), Chap. 5.

    Google Scholar 

  36. P.J. Kuntz, A direct interaction model for gas-phase chemical reactions, Trans. Faraday Soc. 66, 2980–2996 (1970).

    Article  CAS  Google Scholar 

  37. D.R. Bates, C.J. Cook, and F.J. Smith, Classical theory of ion-molecule rearrangement at high energies, Proc. Phys. Soc. 83, 49–57 (1964).

    Article  CAS  Google Scholar 

  38. B.H. Mahan, An analysis of direct ion-molecule reactions, in Interactions between Ions and Molecules, Pierre Ausloos, editor, Plenum Press, New York (1975), pp. 75–93.

    Google Scholar 

  39. B.H. Mahan, W.E.W. Ruska, and J.S. Winn, Sequential impulse model of direct reactions, J. Chem. Phys. 65, 3888–3896 (1976).

    Article  CAS  Google Scholar 

  40. D.J. Malcolme-Lawes, Computer simulation of reactions of hot hydrogen atoms, J. Chem. Phys. 57, 5522–5530 (1972).

    Article  CAS  Google Scholar 

  41. D J. Malcolme-Lawes, High energy reaction kinetics using a hard-sphere model, J. Chem. Soc. Faraday Trans. 2 68, 1613–1622 (1972).

    Article  CAS  Google Scholar 

  42. R.J. Suplinskas, Kinematic model for atom-diatom reactions, J. Chem. Phys. 49, 5046–5053 (1968).

    Article  CAS  Google Scholar 

  43. T.F. George and R.J. Suplinskas, Kinematic model for reaction. III. Ar+ + D2, J. Chem. Phys. 54, 1037–1045 (1971).

    Article  CAS  Google Scholar 

  44. G.M. Kendall, Chattering in hard sphere reactions, J. Chem. Phys. 58, 3523–3524 (1973).

    Article  CAS  Google Scholar 

  45. C. Rebick, R.D. Levine, and R.B. Bernstein, Energy requirements and energy disposal: Reaction probability matrices and a computational study of a model system, J. Chem. Phys. 60, 4977–4989 (1974).

    Article  CAS  Google Scholar 

  46. B.J. Alder and T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459–466 (1959).

    Article  CAS  Google Scholar 

  47. J.C. Light, Phase-space theory of chemical kinetics, J. Chem. Phys. 40, 3221–3229 (1964).

    Article  CAS  Google Scholar 

  48. C. Rebick and R.D. Levine, Collision induced dissociation: A statistical theory, J. Chem. Phys. 58, 3942–3952 (1973).

    Article  CAS  Google Scholar 

  49. F.T. Smith, Generalized angular momentum in many-body collisions, Phys. Rev. 120, 1058–1069 (1960).

    Article  Google Scholar 

  50. R.D. Levine and R.B. Bernstein, Collision-induced dissociation: A simplistic optical model analysis, Chem. Phys. Lett. 11, 552–556 (1971).

    Article  CAS  Google Scholar 

  51. W.B. Maier II, Dissociative ionization of N2 and N2O by rare gas ion impact, J. Chem. Phys. 41, 2174–2181 (1964).

    Article  CAS  Google Scholar 

  52. E.K. Parks, A. Wagner, and S. Wexler, Collision-induced ion pair formation of thallium halides: Threshold behavior, J. Chem. Phys. 58, 5502–5513 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Kuntz, P.J. (1979). Collision-Induced Dissociation II: Trajectories and Models. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics