Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Devices for electrochemical energy conversion and storage exist at different levels of development, from the early stages of R&D to mature and deployed technologies. Thanks to the very significant progresses achieved in the field of computational science over the past few decades, multiscale modeling and numerical simulation are emerging as powerful tools for in silico studies of mechanisms and processes in these devices. These innovative approaches allow linking the chemical/microstructural properties of materials and components with their macroscopic efficiency. In combination with dedicated experiments, they can potentially provide tremendous progress in designing and optimizing the next-generation electrochemical cells. This chapter provides a comprehensive overview of the theory and practical aspects of integrative multiscale modeling tools within the context of fuel cells and rechargeable batteries. Additionally, the chapter discusses technical dreams and methodological challenges that computational science is facing today in order to help developing efficient, durable, and low-cost electrochemical energy devices but also to trigger major technological breakthroughs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franco A (ed) (2015) Rechargeable lithium batteries: from fundamentals to applications. Elsevier

    Google Scholar 

  2. Franco AA (ed) (2013) Polymer electrolyte fuel cells: science, applications, and challenges. CRC Press

    Google Scholar 

  3. Franco AA (2013) Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3(32):13027–13058

    Article  Google Scholar 

  4. http://mobiiarttshirts.com/

  5. Haddad L, Duprat G, Seuil (2006) Mondes: Mythes et Images de l’Univers

    Google Scholar 

  6. Couenne F, Jallut C, Maschke B, Breedveld P, Tayakout M (2006) Math Comput Modell Dyn Syst 12(2–3):159

    Google Scholar 

  7. Franco AA, Schott P, Jallut C, Maschke B (2007) A multi-scale dynamic mechanistic model for the transient analysis of PEFCs. Fuel Cells 7(2):99–117

    Article  Google Scholar 

  8. Bessler WG, Gewies S, Vogler M (2007) A new framework for physically based modeling of solid oxide fuel cells. Electrochim Acta 53(4):1782–1800

    Article  Google Scholar 

  9. Wang CY, Srinivasan V (2002) Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling. J Power Sources 110(2):364–376

    Article  Google Scholar 

  10. Methekar RN, Northrop PW, Chen K, Braatz RD, Subramanian VR (2011) Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: passive layer formation. J Electrochem Soc 158(4):A363–A370

    Article  Google Scholar 

  11. Quiroga MA, Franco AA (2015) A multi-paradigm computational model of materials electrochemical reactivity for energy conversion and storage. J Electrochem Soc 162(7):E73–E83

    Article  Google Scholar 

  12. Andreaus B, Maillard F, Kocylo J, Savinova ER, Eikerling M (2006) Kinetic modeling of COad monolayer oxidation on carbon-supported platinum nanoparticles. J Phys Chem B 110(42):21028–21040

    Article  Google Scholar 

  13. De Morais RF, Sautet P, Loffreda D, Franco AA (2011) A multiscale theoretical methodology for the calculation of electrochemical observables from ab initio data: application to the oxygen reduction reaction in a Pt (111)-based polymer electrolyte membrane fuel cell. Electrochim Acta 56(28):10842–10856

    Article  Google Scholar 

  14. Fantauzzi D, Zhu T, Mueller JE, Filot IA, Hensen EJ, Jacob T (2015) Microkinetic modeling of the oxygen reduction reaction at the Pt (111)/gas interface. Catal Lett 145(1):451–457

    Article  Google Scholar 

  15. Eikerling MH, Malek K, Wang Q (2008) Catalyst layer modeling: structure, properties and performance. In: PEM fuel cell electrocatalysts and catalyst layers. Springer, London, pp 381–446

    Google Scholar 

  16. Franco AA, Frayret C (2014) Modeling in the design of batteries for large and medium-scale energy storage, book chapter. In: Menictas C, Skyllas-Kazacos M, Lim TM (eds) Advances in batteries for large- and medium-scale energy storage. Elsevier/Woodhead, Cambridge

    Google Scholar 

  17. Sheppard D, Terrell R, Henkelman G (2008) Optimization methods for finding minimum energy paths. J Chem Phys 128(13):134106

    Google Scholar 

  18. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  Google Scholar 

  19. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  Google Scholar 

  20. Ferreira de Morais R, Franco AA, Sautet P, Loffreda D (2015) Interplay between reaction mechanism and hydroxyl species for water formation on Pt (111). ACS Catal 5(2):1068–1077

    Google Scholar 

  21. Yu Y, Zuo Y, Zuo C, Liu X, Liu Z (2014) A hierarchical multiscale model for microfluidic fuel cells with porous electrodes. Electrochim Acta 116:237–243

    Article  Google Scholar 

  22. Malek K, Franco AA (2011) Microstructure-based modeling of aging mechanisms in catalyst layers of polymer electrolyte fuel cells. J Phys Chem B 115(25):8088–8101

    Google Scholar 

  23. Kim GH, Smith K, Lee KJ, Santhanagopalan S, Pesaran A (2011) Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. J Electrochem Soc 158(8):A955–A969

    Article  Google Scholar 

  24. Prigogine I (1967) Introduction to thermodynamics of irreversible processes, vol 1, 3rd edn. Interscience, New York

    Google Scholar 

  25. Georgiadis MC, Myrian S, Efstratios N, Gani R (2002) Comput Chem Eng 26:735

    Article  Google Scholar 

  26. Franco AA (2005) A physical multi-scale model of the electrochemical dynamics in a polymer electrolyte fuel cell—an infinite dimensional Bond Graph approach. PhD Thesis Université Claude Bernard Lyon-1 (France) no. 2005LYO10239

    Google Scholar 

  27. Bozic S, Kondov I (2012). In: Cunningham P, Cunningham M (eds) eChallenges e-2012 conference proceedings. IIMC International Information Management Corporation

    Google Scholar 

  28. http://www.knime.org/

  29. http://www.unicore.eu/index.php

  30. Elwasif WR, Bernholdt DE, Pannala S, Allu S, Foley SS (2012) 2012 IEEE 15th international conference on computational science and engineering, cse, pp 102–110

    Google Scholar 

  31. Franco AA (2014) Physical modeling and numerical simulation of direct alcohol fuel cells. In Direct alcohol fuel cells. Springer, Netherlands, pp 271–319

    Google Scholar 

  32. Hu G, Li G, Zheng Y, Zhang Z, Xu Y (2014) J Energy Inst 87:163

    Google Scholar 

  33. Song D, Wang Q, Liu Z, Eikerling M, Xie Z, Navessin T, Holdcroft S (2005). A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochimica Acta 50(16):3347–3358

    Google Scholar 

  34. Moore M, Wardlaw P, Dobson P, Boisvert JJ, Putz A, Spiteri RJ, Secanell M (2014) Understanding the effect of kinetic and mass transport processes in cathode agglomerates. J Electrochem Soc 161(8):E3125–E3137

    Google Scholar 

  35. Xing L et al (2014) Numerical investigation of the optimal Nafion® ionomer content in cathode catalyst layer: An agglomerate two-phase flow modelling. Int J Hydr En 39:9087–9104

    Google Scholar 

  36. Dargaville S, Farrell TW (2010) Predicting active material utilization in LiFePO4 electrodes using a multiscale mathematical model. J Electrochem Soc 157(7):A830–A840

    Article  Google Scholar 

  37. Zhang X, Ostadi H, Jiang K, Chen R (2014) Reliability of the spherical agglomerate models for catalyst layer in polymer electrolyte membrane fuel cells. Electrochimica Acta 133:475–483

    Google Scholar 

  38. Roberts SA, Brunini VE, Long KN, Grillet AM (2014) A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in lithium-ion electrodes. J Electrochem Soc 161(11):F3052–F3059

    Article  Google Scholar 

  39. Kriston A, Pfrang A, Popov BN, Boon-Brett L (2014) Development of a full layer pore-scale model for the simulation of electro-active material used in power sources. J Electrochem Soc 161(8):E3235–E3247

    Article  Google Scholar 

  40. Liu Z, Battaglia V, Mukherjee PP (2014) Mesoscale elucidation of the influence of mixing sequence in electrode processing. Langmuir 30(50):15102–15113

    Article  Google Scholar 

  41. Sanyal J, Goldin GM, Zhu H, Kee RJ (2010) A particle-based model for predicting the effective conductivities of composite electrodes. J Power Sources 195(19):6671–6679

    Article  Google Scholar 

  42. Gawel DA, Pharoah JG, Beale SB (2015) Development of a SOFC performance model to analyze the powder to power performance of electrode microstructures. ECS Trans 68(1):1979–1987

    Article  Google Scholar 

  43. Kong W, Zhang Q, Gao X, Zhang J, Chen D, Su S (2015) A method for predicting the tortuosity of pore phase in solid oxide fuel cells electrode. Int J Electrochem Sci 10:5800–5811

    Google Scholar 

  44. Bertei A, Pharoah JG, Gawel DAW, Nicolella C (2014) A particle-based model for effective properties in infiltrated solid oxide fuel cell electrodes. J Electrochem Soc 161(12):F1243–F1253

    Article  Google Scholar 

  45. Grew KN, Chiu WK (2012) A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. J Power Sources 199:1–13

    Article  Google Scholar 

  46. Cai Q, Adjiman CS, Brandon NP (2011) Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: computational parameters. Electrochim Acta 56(16):5804–5814

    Article  Google Scholar 

  47. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Google Scholar 

  48. Kamaya N et al (2011) A lithium superionic conductor. Nat Mater 10:682

    Article  Google Scholar 

  49. Huang H (2014) MSc. thesis, Université de Picardie Jules Verne, Amiens, France

    Google Scholar 

  50. Cundall PA, Strack ODL (1979) A distinct element method for modeling granular assemblies. Geotechnique 29:47–65

    Google Scholar 

  51. Nishida Y, Itoh S (2011) A modeling study of porous composite microstructures for solid oxide fuel cell anodes. Electrochimica Acta 56(7):2792–2800.

    Google Scholar 

  52. Nguyen TK, Huang H, Franco AA (2015) Paper in preparation

    Google Scholar 

  53. Malek K, Eikerling M, Wang Q, Navessin T, Liu Z (2007) Self-organization in catalyst layers of polymer electrolyte fuel cells. J Phys Chem C 111(36):13627–13634

    Article  Google Scholar 

  54. Malek K, Mashio T, Eikerling M (2011) Microstructure of catalyst layers in PEM fuel cells redefined: a computational approach. Electrocatalysis 2(2):141–157

    Article  Google Scholar 

  55. Cheng CH, Malek K, Djilali N (2008) The effect of Pt cluster size on micro-morphology of PEMFC catalyst layers-a molecular dynamics simulation. ECS Trans 16(2):1405–1411

    Article  Google Scholar 

  56. Franco AA, Gerard M (2008) Multiscale model of carbon corrosion in a PEFC: coupling with electrocatalysis and impact on performance degradation. J Electrochem Soc 155(4):B367–B384

    Article  Google Scholar 

  57. Franco AA, Passot S, Fugier P, Anglade C, Billy E, Guétaz L, Fugier P, Mailley S (2009) PtxCoy catalysts degradation in PEFC environments: mechanistic insights I. multiscale modeling. J Electrochem Soc 156(3):B410–B424

    Article  Google Scholar 

  58. Coulon R, Bessler W, Franco AA (2010) Modeling chemical degradation of a polymer electrolyte membrane and its impact on fuel cell performance. ECS Trans 25(35):259–273

    Article  Google Scholar 

  59. Franco AA, Coulon R, de Morais RF, Cheah SK, Kachmar A, Gabriel MA (2009) Multi-scale modeling-based prediction of PEM Fuel Cells MEA durability under automotive operating conditions. ECS Trans 25(1):65–79

    Article  Google Scholar 

  60. Cheah SK, Sicardy O, Marinova M, Guetaz L, Lemaire O, Gélin P, Franco AA (2011) CO impact on the stability properties of PtxCoy nanoparticles in PEM fuel cell anodes: mechanistic insights. J Electrochem Soc 158(11):B1358–B1367

    Article  Google Scholar 

  61. Franco AA (2007) Transient multi-scale modelling of ageing mechanisms in a polymer electrolyte fuel cell: an irreversible thermodynamics approach. ECS Trans 6(10):1–23

    Article  Google Scholar 

  62. Franco AA, Tembely M (2007) Transient multiscale modeling of aging mechanisms in a PEFC cathode. J Electrochem Soc 154(7):B712–B723

    Article  Google Scholar 

  63. Franco AA (2012) PEMFC degradation modeling and analysis, book chapter. In: Hartnig C, Roth C (eds) Polymer electrolyte membrane and direct methanol fuel cell technology (PEMFCs and DMFCs)—Vol 1: fundamentals and performance. Woodhead, Cambridge

    Google Scholar 

  64. Quiroga MA, Malek K, Franco AA (2015) J Electrochem Soc, in press.

    Google Scholar 

  65. Strahl S, Husar A, Franco AA (2014) Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: a multiscale modeling approach. Int J Hydrogen Energy 39(18):9752–9767

    Article  Google Scholar 

  66. Franco AA, Xue KH (2013) Carbon-based electrodes for lithium air batteries: scientific and technological challenges from a modeling perspective. ECS J Solid State Sc Tech 2(10):M3084–M3100

    Google Scholar 

  67. Xue KH, Nguyen TK, Franco AA (2014) Impact of the cathode microstructure on the discharge performance of lithium air batteries: a multiscale model. J Electrochem Soc 161(8):E3028–E3035

    Article  Google Scholar 

  68. Bevara V, Andrei P (2014) Changing the cathode microstructure to improve the capacity of Li-air batteries: theoretical predictions. J Electrochem Soc 161(14):A2068–A2079

    Article  Google Scholar 

  69. Olivares-Marín M, Palomino P, Enciso E, Tonti D (2014) Simple method to relate experimental pore size distribution and discharge capacity in cathodes for Li/O2 batteries. J Phys Chem C 118(36):20772–20783

    Article  Google Scholar 

  70. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164

    Google Scholar 

  71. Duduta M et al (2011) Semi‐Solid lithium rechargeable flow battery. Adv Energy Mater, 1(4):511–516

    Google Scholar 

  72. Hamelet S et al (2012) Non-aqueous Li-based redox flow batteries. J Electrochem Soc 159(8):A1360–A1367

    Google Scholar 

  73. Hamelet S, Larcher D, Dupont L, Tarascon JM (2013) Silicon-based non aqueous anolyte for li redox-flow batteries. J Electrochem Soc 160(3):A516–A520.

    Google Scholar 

  74. Brunini VE, Chiang YM, Carter WC (2012) Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries. Electrochimica Acta 69:301–307

    Google Scholar 

  75. Smith KC, Chiang YM, Carter WC (2014) Maximizing energetic efficiency in flow batteries utilizing non-Newtonian fluids. J Electrochem Soc 161(4):A486–A496

    Google Scholar 

  76. Grinberg L, Karniadakis G, Insley JA, Papka ME Brown University and Argonne National Laboratory. https://www.youtube.com/watch?v=tBga86M9Gm4 and https://www.youtube.com/watch?v=0hibGZi8TWs

  77. Franco AA et al (2015) WONDERFUL project (Conseil Régional de Picardie and European Regional Development Fund)

    Google Scholar 

  78. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155

    Google Scholar 

  79. Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150(11):A1523–A1527

    Article  Google Scholar 

  80. Fowler MW, Mann RF, Amphlett JC, Peppley BA, Roberge PR (2002) Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell. J Power Sources 106(1):274–283

    Article  Google Scholar 

  81. Baxter SF, Battaglia VS, White RE (1999) Methanol fuel cell model: anode. J Electrochem Soc 146(2):437–447

    Article  Google Scholar 

  82. Bao C, Bessler WG (2015) Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. model development. J Power Sources 275:922–934

    Article  Google Scholar 

  83. Zhang H, Haas H, Hu J, Kundu S, Davis M, Chuy C (2013) The impact of potential cycling on PEMFC durability. J Electrochem Soc 160(8):F840–F847

    Google Scholar 

  84. Biesheuvel PM, Franco AA, Bazant MZ (2009) Diffuse charge effects in fuel cell membranes. J Electrochem Soc 156(2):B225–B233

    Article  Google Scholar 

  85. Franco AA, Schott P, Jallut C, Maschke B (2006) A dynamic mechanistic model of an electrochemical interface. J Electrochem Soc 153(6):A1053–A1061

    Article  Google Scholar 

  86. Quiroga MA, Xue KH, Nguyen TK, Tułodziecki M, Huang H, Franco AA (2014) A multiscale model of electrochemical double layers in energy conversion and storage devices. J Electrochem Soc 161(8):E3302–E3310

    Article  Google Scholar 

  87. Damasceno Borges D, Franco AA, Malek K, Gebel G, Mossa S (2013) Inhomogeneous transport in model hydrated polymer electrolyte supported ultrathin films. ACS Nano 7(8):6767–6773

    Article  Google Scholar 

  88. Borges DD (2013) Etude computationnelle de la formation d’un film ultra-mince de Nafion à l’intérieur d’une couche catalytique de PEMFC. Doctoral dissertation, Université de Grenoble

    Google Scholar 

  89. Damasceno Borges D, Gebel G, Franco AA, Malek K, Mossa S (2014) Morphology of supported polymer electrolyte ultrathin films: a numerical study. J Phys Chem C 119(2):1201–1216

    Article  Google Scholar 

  90. Van der Ven A, Ceder G (2000) Lithium diffusion in layered Li x CoO2. Electrochem Solid-State Lett 3(7):301–304

    Google Scholar 

  91. Zhdanov VP (2007) Simulations of processes related to H2–O2 PEM fuel cells. J Electroanal Chem 607(1):17–24

    Google Scholar 

  92. Zhdanov VP, Kasemo B (2003) Role of the field fluctuations in electrochemical reactions. Appl Surf Sci 219(3):256–263

    Google Scholar 

  93. www.modeling-electrochemistry.com

  94. Blanquer G, Yin Y, Quiroga M, Franco AA (2015) J Electrochem Soc (Submitted)

    Google Scholar 

  95. Xue KH, McTurk E, Johnson L, Bruce PG, Franco AA (2015) A comprehensive model for non-aqueous lithium air batteries involving different reaction mechanisms. J Electrochem Soc 162(4):A614–A621

    Google Scholar 

  96. Malek K, Maine E, McCarthy IP (2014) A typology of clean technology commercialization accelerators. J Eng Tech Manage 32:26–39

    Google Scholar 

  97. Franco AA, Guinard M, Barthe B, Lemaire O (2009) Impact of carbon monoxide on PEFC catalyst carbon support degradation under current-cycled operating conditions. Electrochim Acta 54(22):5267–5279

    Google Scholar 

  98. Parry V, Berthomé G, Joud JC, Lemaire O, Franco AA (2011) XPS investigations of the proton exchange membrane fuel cell active layers aging: characterization of the mitigating role of an anodic CO contamination on cathode degradation. J Power Sources, 196(5):2530–2538

    Google Scholar 

  99. Engl T, Käse J, Gubler L, Schmidt TJ (2014) On the positive effect of CO during start/stop in high-temperature polymer electrolyte fuel cells. ECS Electrochem Lett 3(7):F47–F49

    Google Scholar 

  100. Franco A, Lemaire O, Escribano S (2014) US Patent 8,871,399. Washington, DC: US Patent and Trademark Office.

    Google Scholar 

  101. Franco AA, Lemaire O, Escribano S (2008) FR patent EN 08. 50875

    Google Scholar 

  102. Islam MS, Fisher CA (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43(1):185–204

    Google Scholar 

  103. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Li x MPO 4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7(2):A30–A32

    Google Scholar 

  104. Danilov D, Niessen RAH, Notten PHL (2011) Modeling all-solid-state Li-ion batteries. J Electrochem Soc 158(3):A215–A222

    Google Scholar 

  105. Costamagna P, Costa P, Arato E (1998) Some more considerations on the optimization of cermet solid oxide fuel cell electrodes. Electrochimica Acta 43(8):967–972

    Google Scholar 

  106. Bertei A, Nucci B, Nicolella C (2013) Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem Eng Sci 101:175–190

    Google Scholar 

  107. Franco AA, Thouvenin I et al (2014) MASTERS project (Conseil Régional de Picardie and European Regional Development Fund)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro A. Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Franco, A.A. (2016). Fuel Cells and Batteries In Silico Experimentation Through Integrative Multiscale Modeling. In: Franco, A., Doublet, M., Bessler, W. (eds) Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5677-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5677-2_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5676-5

  • Online ISBN: 978-1-4471-5677-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics