Skip to main content

Abstract

Micrometeorites are sub-millimeter-sized extraterrestrial particles that survive atmospheric entry. An unbiased collection of micrometeorites should contain samples of all of the dust-producing objects in the solar system. However, because of low concentrations and rapid weathering in terrestrial environments, unbiased collections are difficult to find. Additionally, most particles have been severely heated during atmospheric entry, and the resulting changes must be understood to derive compositional information about the parent micrometeoroids. Large modern collections that can be characterized by the flux, size distribution, and micrometeorite compositional types can help constrain heating models that predict how micrometeorites are heated while entering the Earth’s atmosphere. These collections can also be used as a reference to deduce the effects of weathering on collections of ancient micrometeorites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blanchard, M. B., Brownlee, D. E., Bunch, T. E., Hodge, P. W., and Kyte, F. T. Meteoroid ablation spheres from deep sea sediments. Earth Planet. Sci. Lett. 46, 178–190 (1980).

    Article  ADS  Google Scholar 

  • Bradley, J. P., Sandford, S. A., and Walker, R. M. Interplanetary dust particles. In Meteorites and the early solar system (Kerridge, J. F. and Matthews, M. S., Eds.), Univ. Arizona Press, Tucson, 861–895 (1988).

    Google Scholar 

  • Brownlee, D. E. Extraterrestrial components. In The sea 7 (Emiliani, C, Ed.), Wiley, New York, 733–762 (1981).

    Google Scholar 

  • Brownlee, D. E. Cosmic dust: Collection and research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985).

    Article  ADS  Google Scholar 

  • Brownlee, D. E., Pilachowski, L. B., and Hodge, P. W. Meteorite mining on the ocean floor. Lunar Planet. Sci. 10, 157–158(1979).

    ADS  Google Scholar 

  • Brownlee, D. E., Bates, B. A., Pilachowski, L. B., Olszewski, E., and Siegmund, W. A. Unmelted cosmic materials in deep sea sediments. Lunar Planet. Sci. 11, 109–111 (1980).

    ADS  Google Scholar 

  • Brownlee, D. E., Bates, B., and Beauchamp, R. H. Meteorite ablation spherules as chondrite analogs. In Chondrules and Their Origins (King, E. A., Ed.), Lunar Planet. Inst., Houston, 10–25 (1981).

    Google Scholar 

  • Brownlee, D. E., Joswiak, D. J., Love, S. G., Nier, A. O., Schlutter, D. J., and Bradley, J. P. Identification of cometary and asteroidal particles in stratospheric IDP collections. Lunar Planet. Sci. 24, 205–206 (1993).

    ADS  Google Scholar 

  • Brownlee, D. E., Bates, B., and Schramm, L. The elemental composition of stony cosmic spherules. Meteor. Planet. Sci. 32, 157–175 (1997).

    Article  ADS  Google Scholar 

  • Brunn, A. F., Langer, E., and Pauly, H. Magnetic particles found by raking the deep sea bottom. Deep-Sea Res. 2, 230–246 (1955).

    Article  Google Scholar 

  • Castaing, R. and Fredriksson, K. Analysis of cosmic spherules with an X-ray microanalyser. Geochim. Cosmochim. Acta 14, 114–117 (1958).

    Article  ADS  Google Scholar 

  • Crozier, W. D., Black, magnetic spherules in sediments. J. Geophys. Res. 65, 2971–2977 (1960).

    Article  ADS  Google Scholar 

  • Czajkowski, X, Englert, P., Bosellini, A., and Ogg, J. G. Cobalt enriched hardgrounds—new sources of ancient extraterrestrial materials. Meteoritics 18, 286–287 (1983).

    ADS  Google Scholar 

  • Deutsch, A., Greshake, A., Pesonen, L. J., and Pihlaja, P. Unaltered cosmic spherules in a 1.4-Gyr-old sandstone from Finland. Nature 395, 146–148 (1998).

    Article  ADS  Google Scholar 

  • Esser, B. K. and Turekian, K. K. The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta 57, 3093–3104 (1993).

    Article  ADS  Google Scholar 

  • Flynn, G. J. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989).

    Article  ADS  Google Scholar 

  • Fredriksson, K. and Gowdy, R. Meteoritic debris from the southern California desert. Geochim. Cosmochim. Acta 27, 241–243 (1963).

    Article  ADS  Google Scholar 

  • Ganapathy, R., Brownlee, D. E., and Hodge, P. W. Silicate spherules from deep-sea sediments: Confirmation of extraterrestrial origin. Science 201, 1119–1121 (1978).

    Article  ADS  Google Scholar 

  • Genge, M. J. and Grady, M. M. The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteor. Planet. Sci. 34, 341–356 (1999).

    Article  ADS  Google Scholar 

  • Greshake, A., Klock, W., Arndt, P., Maetz, M., Flynn, G. J., Bajt, S., and Bischoff, A. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteor. Planet. Sci. 33, 267–290 (1998).

    Article  ADS  Google Scholar 

  • Grün, E., Zook, H. A., Fechtig, H., and Geise, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).

    Article  ADS  Google Scholar 

  • Hagen, E. H., Koeberl, C, and Faure, G. Extraterrestrial spherules in glacial sediment, Beardmore Glacier area, Transantarctic Mountain. Antarctic Res. Ser. 50, 19–24, (1990).

    Article  Google Scholar 

  • Harvey, R. P. and Maurette, M. The origin and significance of cosmic dust from the Wolcott Neve, Antarctica. Proc. Lunar Planet. Sci. Conf. 21, 569–578 (1991).

    ADS  Google Scholar 

  • Hashimoto, A. Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of primative materials. Geochem. J. 17, 111–145(1983).

    Article  Google Scholar 

  • Hughes, D. W. Meteors. In Cosmic dust (McDonnell, J. A. M., Ed.), Wiley, Chichester, 123–185 (1978).

    Google Scholar 

  • Jehanno, C, Boclet, D., Bonte, Ph., Castellarin, A., and Rocchia, R. Identification of two populations of extraterrestrial particles in a Jurassic hardground of the Southern Alps. Proc. Lunar Planet. Sci. Conf. 18, 623–630 (1988).

    ADS  Google Scholar 

  • Koeberl, C. and Hagen, E. H. Extraterrestrial spherules in glacial sediment from the Transantarctic Mountains, Antarctica: Structure, mineralogy and chemical composition. Geochim. Cosmochim. Acta 53, 937–944(1989).

    Article  ADS  Google Scholar 

  • Kyte, F. T. Analyses of extraterrestrial materials in terrestrial sediments. Ph.D. thesis, Univ. California, Los Angeles, 152 pp. (1983).

    Google Scholar 

  • Kyte, F. T. and Wassou, J. T. Accretion rate of extraterrestrial matter: Iridium deposited 33 to 67 million years ago. Science 232, 1225–1229 (1986).

    Article  ADS  Google Scholar 

  • Laevastu, T. and Mellis, O. Extraterrestrial material in deep-sea deposits. Trans. AGU 36, 385–389 (1955).

    Google Scholar 

  • Langway, C. C. Sampling for extra-terrestrial dust on the Greenland Ice Sheet. Union Geodesique et Geophysique Internationale, Association Internationale d’Hydrologie Scientific. Berkeley Symposium 61, 189–197(1963).

    Google Scholar 

  • Love, S. G and Brownlee, D. E. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus 89, 26–43 (1991).

    Article  ADS  Google Scholar 

  • Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    Article  ADS  Google Scholar 

  • Marvin, V. B. and Einaudi, M. T. Black magnetic spherules from Pleistocene beach sands. Geochim. Cosmochim. Acta 31, 1871–1884 (1967).

    Article  ADS  Google Scholar 

  • Maurette, M., Hammer, C, Brownlee, D. E., Reeh, N., and Thomsen, H. H. Placers of cosmic dust in the blue ice lakes of Greenland. Science 233, 869–872 (1986).

    Article  ADS  Google Scholar 

  • Maurette, M., Jehanno, C, Robin, E., and Hammer, C. Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap. Nature 328, 699–702 (1987).

    Article  ADS  Google Scholar 

  • Maurette, M., Hammer, C, and Pourche, M. Multidisciplinary investigations of new collections of Greenland and Antarctica micrometeorites. In From mantle to meteorites (Gopalan, Gaur, Somayajulu, and MacDougall, Eds.), Indian Acad. Sci., Bangalore, 87–126 (1990).

    Google Scholar 

  • Maurette, M., Olinger, C, Christophe Michel-Levy, M., Kurat, G., Pourchet, M, Brandstatter, F., and Bourot-Denise, M. A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351, 44–47 (1991).

    Article  ADS  Google Scholar 

  • Maurette, M., Kurat, G., Perreau, M., and Engrand, C. Microanalyses of Cap-Prudhomme Antarctic micrometeorites. Microbeam Anal. 2, 239–251 (1993).

    Google Scholar 

  • Millard, H. T. and Finkelman, R. B. Chemical and mineralogical compositions of cosmic and terrestrial spherules from a marine sediment.J. Geophys. Res. 75, 2125–2133 (1970).

    Article  ADS  Google Scholar 

  • Murray, J. On the distribution of volcanic debris over the floor of the ocean—its character, source, and some of the products of its disintegration and decomposition. Proc. R. Soc. Edinburgh 9, 247–261 (1876).

    Google Scholar 

  • Murray, J. and Renard, A. F. On the microscopic characters of volcanic ashes and cosmic dust, and their distribution in deep-sea deposits. Proc. R. Soc. Edinburgh 12, 474–495 (1883).

    Google Scholar 

  • Murray, I and Renard, A. F. Report on the scientific results of the voyage of H. M. S. Challenger during the years 1873-76, Deep-Sea Deposits, 327–336 (1891).

    Google Scholar 

  • Murrell, M. T., Davis, P. A., Nishiizumi, K., and Millard, H. T. Deep-sea spherules from Pacific clay: Mass distribution and influx rate. Geochim. Cosmochim. Acta 44, 2067–2074 (1980).

    Article  ADS  Google Scholar 

  • Mutch, T. A. Abundance of magnetic spherules in Silurian and Permian salt samples. Earth Planet. Sci. Lett. 1, 325–329, (1966).

    Article  ADS  Google Scholar 

  • Nier, A. O. Helium and neon in interplanetary dust particles. InAnalysis of interplanetary dust (Zolensky, M. E., Wilson, T. L., Rietmeijer, F. J. M., and Flynn, G. J., Eds.), Am. Inst. Phys., 115–126 (1994).

    Google Scholar 

  • Nishiizumi, K. Measurement of 53Mn in deep-sea iron and stony spherules. Earth Planet. Sci. Lett. 63, 223–228,(1983).

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Arnold, J. R., Brownlee, D. E., Caffe, M. W., Ginkel, R. C, and Harvey, R. P. 10Be and 26A1 in individual cosmic spherules from Antarctica. Meteoritics 30, 728–732 (1995).

    ADS  Google Scholar 

  • Peng, H. and Lui, Z. Measurement of the annual flux of cosmic dust in deep-sea sediments. Meteoritics 24, 315(1989).

    ADS  Google Scholar 

  • Pettersson, H. and Fredriksson, K. Magnetic spherules in deep sea deposits. Pacific Sci. 12, 71–81, (1958).

    Google Scholar 

  • Peucker-Ehrenbrink, B. Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim. Cosmochim. Acta 60, 3187–3196 (1996).

    Google Scholar 

  • Peucker-Ehrenbrink, B. and Ravizza, G. The effects of sampling artifacts on cosmic dust flux estimates: A re-evaluation of non-volatile tracers (Os, Ir). Geochim. Cosmochim. Acta 64, 1965–1970 (2000)

    Article  ADS  Google Scholar 

  • Raisbeck, G. M., Yiou, F., Bourles, D., and Maurette, M. 10Be and 26A1 in Greenland cosmic spherules: Evidence for irradiation in space as small objects and a probable cometary origin. Meteoritics 21, 487–488 (1986).

    ADS  Google Scholar 

  • Robin, E., Bonte, Ph., Fraget, L., Jehanno, C, and Rocchia, R. Formation of spinels in cosmic objects during atmospheric entry: A clue to the Cretaceous-Tertiary boundary event. Earth Planet. Sci. Lett. 108, 181–190(1992).

    Article  ADS  Google Scholar 

  • Smales, A. A., Mapper, D., and Wood, A. J. Radioactivation analysis of “cosmic” and other magnetic spherules. Geochim. Cosmochim. Acta 13, 123–126 (1958).

    Article  ADS  Google Scholar 

  • Taylor, S. and Brownlee, D. E. Cosmic spherules in the geologic record. Meteoritics 26, 203–211 (1991).

    ADS  Google Scholar 

  • Taylor, S., Lever, J. H., and Harvey, R. P., and Govoni, J. Collecting micrometeorites from the South Pole water well. CRREL Rept. 97-1. Cold Regions Research and Engineering Laboratory, Hanover, 37 pp. (1997).

    Google Scholar 

  • Taylor, S., Lever, J. H., and Harvey, R. P Accretion rate of cosmic spherules measured at the South Pole. Nature 392, 899–903 (1998).

    Article  ADS  Google Scholar 

  • Taylor, S., Lever, J. H., and Harvey, R. P. Numbers, types and compositions of an unbiased collection of cosmic spherules. Meteor. Planet. Sci. 35(4) 651–666 (2000).

    Article  ADS  Google Scholar 

  • Thiel, E. and Schmidt, R. A. Spherules from the Antarctic ice cap. J. Geophys. Res. 66, 307–310 (1961).

    Article  ADS  Google Scholar 

  • Tuncel, G. and Zoller, W. H. Atmospheric indium at the South Pole as a measure of the meteoritic component. Nature 329, 703–705 (1987).

    Article  ADS  Google Scholar 

  • Wulfing, E. A. Beitrag zur Kenntniss des Kryokonit. Neues Jb. Mineral. 7, 152–174, (1890).

    Google Scholar 

  • Xue, S., Herzog, G. F., Hall, G. S., Bi, D., and Brownlee, D. E. Nickel isotope abundances of I-type deep-sea spheres and of iron-nickel spherules from sediments in Alberta, Canada. Geochim. Cosmochim. Acta 59, 4975–4981 (1995).

    Article  ADS  Google Scholar 

  • Yiou, F. and Raisbeck, G. M. Cosmic spherules from an Antarctic ice core. Meteoritics 22, 539–540 (1987).

    ADS  Google Scholar 

  • Yiou, F., Raisbeck, G. M., and Jehanno, C. Influx of cosmic spherules to the Earth during the last ∼105 years as deduced from concentrations in Antarctic ice cores. Meteoritics 24, 344 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, S., Lever, J.H. (2001). Seeking Unbiased Collections of Modern and Ancient Micrometeorites. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8694-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8694-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4668-5

  • Online ISBN: 978-1-4419-8694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics