Skip to main content

Computing Distances Between Evolutionary Trees

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization

Abstract

In this chapter, we survey some results on some transformation-based distances for evolutionary trees. The authors will focus on the nearest-neighbor distance and a closely related distance called the subtree-transfer distance used in dealing with evolutionary histories involving events like recombinations or gene conversions; some variants of these distances will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually the operations are reversible, so the authors do not have to specify the direction of a transformation.

  2. 2.

    In [27], the author reduced the partition problem to nni by constructing a tree of i nodes for a number i, in an attempt to prove the NP-hardness of computing nni distance between unlabeled trees.

Recommended Reading

  1. D. Aldous, Triangulating the circle, at random. Am. Math. Mon. 89, 223–234 (1994)

    Article  MathSciNet  Google Scholar 

  2. D. Barry, J.A. Hartigan, Statistical analysis of hominoid molecular evolution. Stat. Sci. 2, 191–210 (1987)

    Article  MathSciNet  Google Scholar 

  3. C.H. Bennett, P. Gács, M. Li, P. Vitányi, W. Zurek, Information distance. IEEE Trans. Inform. Theory 44, 1407–1423 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.P. Boland, E.K. Brown, W.H.E. Day, Approximating minimum-length-sequence metrics: a cautionary note. Math. Soc. Sci. 4, 261–270 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Collado-Vides, B. Magasanik, T.F. Smith (eds.), Integrative Approaches to Molecular Biology (MIT, Cambridge, 1996)

    Google Scholar 

  6. K. Culik II, D. Wood, A note on some tree similarity measures. Inform. Proc. Lett. 15, 39–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Zhang, On distances between phylogenetic trees, in Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 1997, New Orleans, LA, USA, pp. 427–436

    Google Scholar 

  8. B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, On the linear-cost subtree-transfer distance. Algorithmica 25(2), 176–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. W.H.E. Day, Properties of the nearest neighbor interchange metric for trees of small size. J. Theor. Biol. 101, 275–288 (1983)

    Article  Google Scholar 

  10. A.K. Dewdney, Wagner’s theorem for torus graphs. Discr. Math., 4, 139–149 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.W.F. Edwards, L.L. Cavalli-Sforza, The reconstruction of evolution. Ann. Hum. Genet. 27, 105 (1964) (also in Heredity 18, 553)

    Google Scholar 

  12. J. Felsenstein, Evolutionary trees for DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

    Article  Google Scholar 

  13. W.M. Fitch, Toward defining the course of evolution: minimum change for a specified tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  14. W.M. Fitch, E. Margoliash, Construction of phylogenetic trees. Science 155, 279–284 (1967)

    Article  Google Scholar 

  15. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, New York, NY, 1979)

    MATH  Google Scholar 

  16. L. Guibas, J. Hershberger, Morphing simple polygons, in Proceeding of the ACM 10th Annual Symposium of Computer Geometry, 1994, Stony Brook, NY, USA, pp. 267–276

    Google Scholar 

  17. J. Hein, Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98, 185–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Hein, A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36, 396–405 (1993)

    Google Scholar 

  19. J. Hein, T. Jiang, L. Wang, K. Zhang, On the complexity of comparing evolutionary trees. Discr. Appl. Math. 71, 153–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Hershberger, S. Suri, Morphing binary trees, in Proceeding of the ACM-SIAM 6th Annual Symposium of Discrete Algorithms, 1995, San Francisco, CA, USA, pp. 396–404

    Google Scholar 

  21. L. Hunter (ed.), Artificial Intelligence in Molecular Biology (MIT, Cambridge, 1993)

    Google Scholar 

  22. F. Hurtado, M. Noy, J. Urrutia, Flipping edges in triangulations, in Proceedings of the ACM 12th Annual Symposium of Computer Geometry, 1996, pp. 214–223

    Google Scholar 

  23. J.P. Jarvis, J.K. Luedeman, D.R. Shier, Counterexamples in measuring the distance between binary trees. Math. Soc. Sci. 4, 271–274 (1983)

    Article  MATH  Google Scholar 

  24. J.P. Jarvis, J.K. Luedeman, D.R. Shier, Comments on computing the similarity of binary trees. J. Theor. Biol. 100, 427–433 (1983)

    Article  MathSciNet  Google Scholar 

  25. J. Kececioglu, D. Gusfield, Reconstructing a history of recombinations from a set of sequences, in Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 1994

    Google Scholar 

  26. M. Kuhner, J. Felsenstein, A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11(3), 459–468 (1994)

    Google Scholar 

  27. M. Křivánek, Computing the nearest neighbor interchange metric for unlabeled binary trees is NP-complete. J. Classification 3, 55–60 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. V. King, T. Warnow, On measuring the nni distance between two evolutionary trees, in DIMACS Mini Workshop on Combinatorial Structures in Molecular Biology (Rutgers University, New Brunswick, NJ, 1994)

    Google Scholar 

  29. S. Khuller, Open problems: 10. SIGACT News 24(4), 46 (1994)

    MathSciNet  Google Scholar 

  30. J. Meidanis, J.C. Setubal, Introduction to Computational Molecular Biology (PWS Publishing Company, Boston, 1997)

    Google Scholar 

  31. W.J. Le Quesne, The uniquely evolved character concept and its cladistic application. Syst. Zool. 23, 513–517 (1974)

    Article  Google Scholar 

  32. M. Li, J. Tromp, L.X. Zhang, On the nearest neighbor interchange distance between evolutionary trees. J. Theor. Biol. 182, 463–467 (1996)

    Article  Google Scholar 

  33. M. Li, L. Zhang, Better approximation of diagonal-flip transformation and rotation transformation, Lecture Notes in Computer Science, vol. 1449 (Springer, Berlin, Heidelberg, 1998), pp. 85–94

    Google Scholar 

  34. G.W. Moore, M. Goodman, J. Barnabas, An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J. Theor. Biol. 38, 423–457 (1973)

    Article  Google Scholar 

  35. J. Pallo, On rotation distance in the lattice of binary trees. Inform. Proc. Lett. 25, 369–373 (1987)

    Article  MathSciNet  Google Scholar 

  36. D.F. Robinson, Comparison of labeled trees with valency three. J. Combin. Theory Ser. B 11, 105–119 (1971)

    Article  Google Scholar 

  37. N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  38. D. Sankoff, Minimal mutation trees of sequences. SIAM J. Appl. Math. 28, 35–42 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Sankoff, J. Kruskal (eds.), Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison (Addison Wesley, Reading, 1983)

    Google Scholar 

  40. D. Sleator, R. Tarjan, W. Thurston, Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1, 647–681 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Sleator, R. Tarjan, W. Thurston, Short encodings of evolving structures. SIAM J. Discrete Math. 5, 428–450 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. G.A. Stephens, String Searching Algorithms (World Scientific Publishers, Singapore, 1994)

    Google Scholar 

  43. K.C. Tai, The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Wagner, Bemerkungen zum vierfarbenproblem. J. Deutschen Math. Verin. 46, 26–32 (1936)

    Google Scholar 

  45. M.S. Waterman, Introduction to Computational Biology: Maps, Sequences and Genomes (Chapman & Hall, London, 1995)

    Book  MATH  Google Scholar 

  46. M.S. Waterman, T.F. Smith, On the similarity of dendrograms. J. Theor. Biol. 73, 789–800 (1978)

    Article  MathSciNet  Google Scholar 

  47. K. Zhang, D. Shasha, Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18, 1245–1262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. K. Zhang, J. Wang, D. Sasha, On the editing distance between undirected acyclic graphs. Int. J. Found. Comput. Sci. 7(13), 43–58 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhaskar DasGupta , Xin He , Tao Jiang , Ming Li , John Tromp , Lusheng Wang or Louxin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

DasGupta, B. et al. (2013). Computing Distances Between Evolutionary Trees. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_52

Download citation

Publish with us

Policies and ethics