Skip to main content

Evaluation Criteria of Carotid Artery Atherosclerosis: Noninvasive Multimodal Imaging and Molecular Imaging

  • Chapter
  • First Online:
Atherosclerosis Disease Management

Abstract

Carotid artery stenosis is a disease developed due to cardiovascular ­incapacity and cerebral infarction. Carotid artery stenosis is related with deep, subcortical, or cortical infarctions. In presurgery evaluation, asymptomatic dyslipidemia or symptomatic carotid artery stenosis are evaluated by imaging. Cardiovascular ischemia is occasionally interpreted as active and silent infarcts. In advanced atherosclerosis, better information is extracted out from presurgery clinical symptoms combined with dyslipidemia evaluation and associated information from cerebral angiography, carotid duplex ultrasound, computer-assisted topographic angiography (CTA) and magnetic resonance angiography (MRA). In present chapter, the central idea is that carotid artery disease is manifestation of structural and or molecular changes visible in the carotid artery wall and physical characteristics of flowing blood. To evaluate the carotid artery disease burden and plaque type, a new criterion of ­presurgery evaluation was proposed in this chapter by imaging atherosclerosis followed by postsurgery plaque characterization using biomarkers in endarterectomy samples (changes in tissue expression of mRNA-encoded inflammation modulatory proteins, oxidation, lipid transport, calcification, proteolysis, or hemorrhage, oligonucleotide microarray analysis, and high in situ hybridization – GenePaint and immunohistochemistry – ProteinPaint) with or without statin treatment of carotid artery disease. Present time, new multimodal molecular imaging techniques are emerging to give better new insights of plaque staging by molecular events in carotid artery disease progress and its evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first author participated in atherosclerosis program at SCORE labs in department of Medicine, Columbia University, New York under supervison of Dr. JK Katz and his cardiology labs.

  2. 2.

    http://www.cmaj.ca/cgi/content/full/169/9/921/DC1/

  3. 3.

    First author participated in his internship at heart and Vascular Surgery, Tallhassee memorial Hospital, Tallahassee, FL 32304 under mentors Drs. J Hurt, Murrah, Khairrallah, and Saint; DrKatz’s Cardiology, NY.

  4. 4.

    The experiments were conducted with data analysis by first author as postdoc. scientist trainee at Atherosclerosis and Lipoprotein Training Center, Baylor College of Medicine, Houston, TX under supervision of Dr. Joel D Morrisett.

  5. 5.

    The statin evaluation experiment data was analyzed by first author as postdoc. scientist trainee at Atherosclerosis and Lipoprotein Training Center, Baylor College of Medicine, Houston, TX under supervision of Dr. Joel D Morrisett.

  6. 6.

    The NMR experiment data was analyzed by first author as postdoc. scientist trainee at Atherosclerosis and Lipoprotein Training Center, Baylor College of Medicine, Houston, TX under supervision of Dr. Joel D Morrisett.

References

  1. Estol CJ. Dr C. Miller Fisher and the history of carotid artery disease, Stroke, 27, (1996), 559–566.

    CAS  PubMed  Google Scholar 

  2. Stary HC, Bleakley C, Dinsmore RE, Fuster V, Glagov S, Instill W, Rosenfield ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis, Arterioscler Thromb Vasc Biol, 15(9), (1995), 1512–1531.

    CAS  PubMed  Google Scholar 

  3. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerosis lesions with in vivo multicontrast magnetic resonance imaging, Circulation, 106, (2002), 1368–1373.

    Article  PubMed  Google Scholar 

  4. Pasternak RC, Smith SC, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C, American College of Cardiology, American Heart Association, National Heart, Lung and Blood Institute. ACC/AHA, NHLBI clinical advisory on the use and safety of statins, J Am Coll Cardiol, 40, (2002), 567–572.

    Article  PubMed  Google Scholar 

  5. Silvera SS, Aidi HE, Rudd JH, Mani V, Yang L, Farkouh M, Fuster V, Fayad ZA. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries, Atherosclerosis, 207(1), (2009), 139–143.

    Article  CAS  PubMed  Google Scholar 

  6. Turu MM, Krupinski J, Catena E, Rosell A, Montaner J, Rubio F, Sabin JA, Cairols M, Badimon L. Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasound, Atherosclerosis, 187(1), (2006), 161–169.

    Article  CAS  PubMed  Google Scholar 

  7. Koenig W, Khuseyinova N. Biomarkers of atheroclerosis plaque instability and rapture. Atheroscler Thrmob Vascu Biol, 27, (2007), 15–26.

    Google Scholar 

  8. Kleinstreuer C, Nazemi M, Archie JP. Hemodynamics analysis of a stenosed carotid bifurcation and its plaque mitigating design, J Biomech Eng, 113 (3), (1991), 330–335.

    Article  CAS  PubMed  Google Scholar 

  9. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophages, and smooth muscle cell content, Br Heart J, 69, (1993), 377–381.

    Article  CAS  PubMed  Google Scholar 

  10. Seeger MD, Barratt BS, Lawson GA, Klingman N. The relationship between carotid plaque composition, plaque morphology, and neurologic symptoms, J Surg Res, 58, (1995), 330–336.

    Article  CAS  PubMed  Google Scholar 

  11. Bortolani EM, Ghilardi G, Pizzocari P, Coppini P, Longhi F, Trimarchi S. Surgery of the carotid: the morphology of plaque and the clinical correlations, Minerva Cardioangiol, 40(10), (1992), 369–374.

    CAS  PubMed  Google Scholar 

  12. Wasserman BA, Haacke EM, Debiao L. Carotid plaque formation and its evaluation with angiography, ultrasound, and MR angiography, J Mag Res Imaging, 4, (1994), 515–527.

    Article  CAS  Google Scholar 

  13. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessments strategies, Circulation, 108, (2003), 1664–1672.

    Article  PubMed  Google Scholar 

  14. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessments strategies, Circulation, 108, (2003), 1772–1778.

    Article  PubMed  Google Scholar 

  15. Kyriacou E, Pattichis CS, Pattichis MS, Mavrommatis A, Panagiotou S, Christodoulou CI, et al. Classification of atherosclerotic carotid plaques using gray level morphological analysis on ultrasound images. In: Maglogiannis I, Karpouzis K, and Bramer M (Eds) IFIP Internal Federation for Information Processing. V204, Artificial Intelligence Applications and Innovations, 2006, Boston, Springer, pp. 737–744.

    Google Scholar 

  16. Hyun S, Kleinstreuer C, Archie JP. Computational analysis of effects of external carotid artery flow and occlusion on adverse carotid bifurcation hemodynamics, J Vasc Surg, 37(6), (2003), 1248–1254.

    Article  PubMed  Google Scholar 

  17. Glor FP, Ariff B, Hughes AD, Crowe LA, Verdonck PR, Barratt DC, McG Thom SA, Firmin DN, Xu XY. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound, Physiol Meas, 25, (2004), 1495–1509.

    Article  CAS  PubMed  Google Scholar 

  18. Sui B, Gao P, Lin Y, Gao B, Liu L. Blood flow pattern and wall shear stress in the internal carotid arteries of healthy subjects, Acta Radiol, 49(7), (2008), 806–814.

    Article  PubMed  Google Scholar 

  19. Cebral JR, Yim PJ, Lohner R, Soto O, Choyke PL. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging, Acad Radiol, 9, (2002), 1286–1299.

    Article  PubMed  Google Scholar 

  20. Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects, J Vasc Surg, 28(1), (1998), 143–156.

    Article  CAS  PubMed  Google Scholar 

  21. Sharma, R. MR Imaging in carotid artery atherosclerosis plaque characterization, Magn Reson Med Sci, 1(4), (2002), 217–233.

    Article  PubMed  Google Scholar 

  22. Sharma, R. A device for MR imaging of atherosclerosis plaque in carotid endarterectomy specimens ex vivo, Magn Reson Med Sci, 1(1), (2002), 116–124.

    Google Scholar 

  23. Morrisett J, Vick W, Sharma R, Lawrie G, Reardon M, Ezell E, Schwartz J, Hunter G, Gorenstein D. Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by MRI in vivo, J Magn Reson Imaging, 21(5), (2003), 468–474.

    Google Scholar 

  24. Sharma R, Singh RB, Gupta RK. A Segmentation Method for Carotid Artery Atherosclerosis Plaque for MRI Contrast and MRI Features, Oxidative Stress Markers in Coronary and Carotid Plaque 16th IEEE Symposium on Computer-Based Medical Systems (CBMS’03) p. 323. http://ieeexplore.ieee.org/iel5/8605/27272/01212809.pdf

  25. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Steering Committee. North American Symptomatic Carotid Endarterectomy trial. Methods, patient characteristics, and progress, Stroke, 22, (1991), 711–720.

    Google Scholar 

  26. Anderson CM, Saloner D, Lee RE, et al. Assessment of carotid artery stenosis by MR angiography: comparison with X-ray angiography and color-coded Doppler ultrasound, AJNR Am J Neuroradiol, 13, (1992), 989–1003.

    CAS  PubMed  Google Scholar 

  27. Masaryk AM, Ross JS, DiCello MC, Modic MT, Paranandi L, Masaryk TJ. 3DFT MR Angiography of the carotid bifurcation, Radiology, 179, (1991), 797–804.

    CAS  PubMed  Google Scholar 

  28. Anderson CM, Lee RE, Levin DL, Alonso ST, Saloner D. Measurement of internal carotid artery stenosis from MR angiograms, Radiology, 193(1), (1994), 219–226.

    CAS  PubMed  Google Scholar 

  29. Korosec FR, Grist TM, Polzin JA, Weber DM, Mistretta CA. MR angiography using velocity-selective preparation pulses and segmented gradient-echo acquisition, Magn Reson Med, 30, (1993), 704–710.

    Article  CAS  PubMed  Google Scholar 

  30. Yuan C, Murakami JW, Hayes CE, Tsuruda JS, Hatsukami TS, Wildy KS, Ferguson MS, Strandness DE. Phased-array magnetic resonance imaging of the carotid artery bifurcation: preliminary results in health volunteers and a patient with atherosclerotic disease, J Mag Res Imaging, 5, (1995), 561–565.

    Article  CAS  Google Scholar 

  31. Liffers A, Quick HH, Herborn CU, Ermert H, Ladd ME. Geomatrical optimization of a phased array coil for high resolution MR imaging of carotid arteries, Magn Reson Med, 50(2), (2003), 439–443.

    Article  CAS  PubMed  Google Scholar 

  32. Wildy KS, Yuan C, Tsuruda JS, Ferguson MS, Wen N, Subramanian DS, Strandess DE. Atherosclerosis of the carotid artery: evaluation by magnetic resonance angiography, J Magn Reson Imaging, 6, (1996), 726–732.

    Article  CAS  PubMed  Google Scholar 

  33. Shinnar M, Fallon JT, Wehrli S, Levin M, Dalmacy D, Fayad ZA, Badimon JJ, Harrington E, Fuster V. Diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization, Arterioscler Thromb Vasc Biol, 19, (1999), 2756–2761.

    CAS  PubMed  Google Scholar 

  34. Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo, Nat Med, 1(1), (1995), 69–73.

    Article  PubMed  Google Scholar 

  35. Meindl S, Jungke M, Bielke G, von Seelan W, Grigat M, Pedrosa P, Higer HP. Using an “Information Manager” as a component of a tissue classification system in NMR tomography. In: Higer HP and Bielke G (Eds) Tissue Characterization in MR Imaging, Berlin, Springer-Verlag, (1990), 139–144.

    Google Scholar 

  36. Berr SS, Hurt NS, Ayers CR, Snell JW, Merickel MB. Assessment of the reliability of the determination of carotid artery lumen sizes by quantitative image processing of MR angiograms and images, Magn Reson Imaging, 13, (1995), 827–835.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma R, Singh RB. MRI of coronary artery atherosclerosis in rabbits: histopathology MRI correlation and atheroma characterization, Thromb J, 2(1), (2004), 5.

    Article  PubMed  Google Scholar 

  38. Kass M, Witkin A, Terzopoulos D. “SNAKES: Active Contour Models”, Proceedings of First International Conference on Computer Vision, 1987, pp. 259–269.

    Google Scholar 

  39. Yuan C, Lin E, Hwang JN. Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images, Magn Reson Imaging, 17, (1999), 257–266.

    Article  CAS  PubMed  Google Scholar 

  40. Kroon AA, van Asten WNJC, Stalenhoef AFH: Effect of apheresis of low-density lipoprotein on peripheral vascular disease in hypercholesterolemic patients with coronary artery disease, Ann Intern Med, 125, (1996), 945–954.

    CAS  PubMed  Google Scholar 

  41. Schreiner PJ, Heiss G, Tyroler HA, Morrisett JD, Davis CE, Smith R. Race and gender differences in the association of Lp(a) with carotid artery wall thickness, Arterioscler Thromb Vasc Biol, 16(3), (1996), 471–478.

    CAS  PubMed  Google Scholar 

  42. Hodis HN, Mack WJ, LaBree L, Selzer RH, Liu C, Alanpovic P, Kwong_Fu H, Azen SP. Reduction in carotid arterial wall thickness using lovastatin and dietary therapy, Ann Intern Med, 143, (1996), 548–556.

    Google Scholar 

  43. Mercuri M, Bond MG, Sintori CR, Veglia F, Crepaldi G, Ferugho FS, Descovich G, Ricci G, Rubba P, Mancini M, et al. Pravastatin reduces carotid intima media thickness progression in asymptomatic hypercholesterolemic mediterannean population: The Carotid Atheroslcerosis Italian Ultrasound Study, Am J Med 101, (1996), 627–634.

    Article  CAS  PubMed  Google Scholar 

  44. Suurkla M, Agewall S, Fagerberg B, Wendelhag I, Wikstrand J, for the Risk Intervention Study (RIS) Group. Multiple risk intervention in high risk hypertensive patients: a 3 year ultrasound study of intima-media thickness and plaques in the carotid artery, Arterioscler Thromb Vasc Biol, 16, (1996), 462–470.

    Google Scholar 

  45. Furberg CD, Adams HP Jr, Applegate WB, Byington RP, Espeland MA, Hartwell T, Hunninghake DB, Leflkowitz DS, Probstfield J, Riley WA, et al., for the Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events, Circulation, 90, 1994, 1679–1687.

    CAS  PubMed  Google Scholar 

  46. Crouse JR III, Byington RP, Bond MG, Espeland MA, Craven TE, Sprinkle JW, McGovern ME, Furberg CD. Pravastatin, lipids, and atherosclerosis in the carotid arteries (PLAC-11), Am J Cardiol, 75, 1995, 455–459.

    Article  PubMed  Google Scholar 

  47. Salonen R, Nyyssönen K, Porkkala E, Rummukainen J, Belder R, Park J-S, Salonen JT. Kuopio Atherosclerosis Prevention Study (KAPS): a population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries, Circulation, 92, (1995), 1758–1764.

    CAS  PubMed  Google Scholar 

  48. Crisby M, Fredricksson G, Shah PK, Yano J, Zhu J, Nilsoon J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization, Circulation, 103(7), (2001), 926–933.

    CAS  PubMed  Google Scholar 

  49. Goldstein H. Multilevel Statistical Models, Second Edition. New York, Wiley Interscience, (1995), 121–136.

    Google Scholar 

  50. Huttner HJM, van den Eeden P. The Multilevel Design: A Guide with Annotated Bibliography, 1980–1993. Westort, CO, Greenwood Press, 1995.

    Google Scholar 

  51. Kreft I, deLeeuw J. Introducing Multilevel Modeling. Thousand Oaks, CA, Sage Pub, 1998.

    Google Scholar 

  52. Insull W Jr. The problem of compliance to cholesterol altering therapy, J Intern Med, 241, (1997), 317–325.

    Article  CAS  PubMed  Google Scholar 

  53. Adams GJ, Simoni DM, Bordelon CB, Vick W, Kimball KT, Insull W, Morrisett JD. Bilateral symmetry of human carotid artery atherosclerosis, Stroke, 222, (2003), 2575–2580.

    Google Scholar 

  54. King R, Dalquist HD. Method of performing endarterectomy. US patent 4962755, issue date Oct 16, 1990.

    Google Scholar 

  55. McCann RL. Surgical management of carotid artery atherosclerotic disease, South Med J, 86(10), 1993, 2S23–2S28.

    CAS  PubMed  Google Scholar 

  56. Guo W, Morrisett JD, DeBakey ME, Lawrie GM, Hamilton JA. Quantitation in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid state magic angle spinning NMR, Arterioscler Thromb Vasc Biol, 20, (2000), 2682–2688.

    PubMed  Google Scholar 

  57. Guo W, Morrisett JD, Lawrie GM, DeBakey ME, Hamilton JA. Identification of different lipid phases and calcium phosphate deposits in human carotid artery plaques by MAS NMR spectroscopy, Mag Reson Med, 39, (1998), 184–189.

    Article  CAS  PubMed  Google Scholar 

  58. Sharma R, Shriniwas BD, Sharma A. Human Carotid Artery: Segmentation Methods in Atherosclerosis Imaging. World Heart Research Book. Edn Halberg F, Singh RB, (2009); V 1, 193–212.

    Google Scholar 

  59. Sharma R, Sharma A. Segmentation methods in atherosclerosis vascular imaging, Informa Med Slov, 11(2), (2006), 52–69.

    Google Scholar 

  60. Burke AP, Farb A, Malcolm GT, Liang Y-H, Smialek JE, Virmani R. Plaque rupture and sudden death related to exercise in men with coronary artery disease, JAMA 281, (1999), 921–926.

    Article  CAS  PubMed  Google Scholar 

  61. Choudhary S, Higgins CL, Chen IY, Reardon M, Lawrie G, Vick GW III, Karmonik C, Via DP, Morrisett JD. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues, Arterioscler Thromb Vasc Biol, 26(10), (2006), 2351–2358.

    Article  CAS  PubMed  Google Scholar 

  62. WeIgus HM, Campbell EJ, Cury JD, Eisen AZ, Senior RM, Wilheim SM, Goldberg GI. Neutral metalloproteinases produced by human mononuclear phagocytes during cellular development: enzyme profile, regulation, and expression, J Clin Invest, 86, (1990), 1496–1502.

    Article  Google Scholar 

  63. Ling ZL, Ziekle R, Cheng L, Xiao R, Crow MT, Stetler-Stevenson WG, Froelich J, Lakatta EG. Increased expression of 72kD type IV collagenase (MMP-2) in human atherosclerotic lesions, Am J Pathol, 148, (1996) 121–128.

    Google Scholar 

  64. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaque, J Clin Invest, 942, (1994), 2493–2503.

    Article  Google Scholar 

  65. Sharma R. Katz JK. Preliminary studies on human aldosterone synthase (CYP11B2) gene polymorphisms, metalloprotease-9, apoptosis, and carotid atherosclerosis plaque size by proton MRI, J Renin Angiotensin Aldosterone Sys, 11(3), (2009), 198–204.

    Google Scholar 

  66. Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, WeIgus HG, Algers CE, Clowes AW. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis, Circulation, 92, (1995), 1393–1398.

    CAS  PubMed  Google Scholar 

  67. Oksala N, Levula M, Airla N, Pelto-Huikko M, Ortiz RM, Järvinen O, Salenius JP, Ozsait B, Komurcu-Bayrak E, Erginel-Unaltuna N, Huovila AP, Kytömäki L, Soini JT, Kähönen M, Karhunen PJ, Laaksonen R, Lehtimäki T. ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteries – Tampere vascular study, Ann Med, 41(4), (2009), 279–290.

    Article  CAS  PubMed  Google Scholar 

  68. Feng Y, Yang JH, Huang H, Kennedy SP, Turi TG, Thompson JF, Libby P, Lee RT. Transcriptional profile of mechanically induced genes in human vascular smooth muscle cells. Circ Res, 85, (1999), 1118–1123.

    CAS  PubMed  Google Scholar 

  69. Nuotio K, Isoviita PM, Saksi J, IJas P, Pitkaniemi J, Sonninen R, Soinne L, Saimanen E, Salonen O, Kovanen PT, Kaste M, Lindsberg PJ. Adipophilin expression is increased in symptomatic carotid atherosclerosis, Stroke, 38, (2007), 1791.

    Article  CAS  PubMed  Google Scholar 

  70. Hiltunen MO, Tuomisto TT, Niemi M, Bräsen JH, Rissanen TT, Törönen P, Vajanto I, Ylä-Herttuala S. Changes in gene expression in atherosclerotic plaques analyzed using DNA array, Atherosclerosis, 165(1), (2002), 23–32.

    Article  CAS  PubMed  Google Scholar 

  71. Nakai K, Oyanagi M, Hitomi J, Ogasawara K, Inoue T, Kobayashi M, Nakai K, Suwabe A, Habano W, Baba T, Yoshida H, Ogawa A. Screening the single nucleotide polymorphisms in patients with internal carotid artery stenosis by oligonucleotide-based custom DNA array, Bioinf Biol Insights, 1(1), (2007), 63–69.

    Google Scholar 

  72. Sharma R, Katz JK. Taxotere chemosensitivity evaluation in mice prostate tumor: validation and diagnostic accuracy of quantitative measurement of tumor characteristics by MRI, PET, and histology of mice tumor, Technol Cancer Res Treat, (7)3, (2008), 155–268.

    Google Scholar 

  73. Papazoglou T, Papaioannou T, Arakawa K, Fishbein M, Marmarelis VZ, Grundfest WS. Control of excimer laser aided tissue ablation via laser-induced fluorescence monitoring, Appl Opt, 29, (1990), 4950–4955.

    Article  CAS  PubMed  Google Scholar 

  74. Friedlander AH, Freymiller EG. Detection of radiation accelerated atherosclerosis of the carotid artery by panoramic radiography, J Am Dent Assoc, 134(10), (2003), 1361–1365.

    PubMed  Google Scholar 

  75. Shriniwas BD, Sharma R, Sharma A. Extended applications of picotechnology to measure immunoactive biomarkers. Nanotech NSTI 2009 Conference and EXPO Houston, 2009 May 3 WE62.506.

    Google Scholar 

  76. Arakawa K, Isoda K, Ito T, Nakajima K, Shibuya T, Ohsuzu F. Fluorescence analysis of biochemical constituent identifies atherosclerostic plaques with a thin fibrous cap, Arterioscler Thromb Vasc Biol, 22, (2002), 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  77. Chang K, Jaffer F. Advances in fluorescence imaging of the cardiovascular system, J Nucl Cardiol, 15(3), (2008), 417–428.

    Article  PubMed  Google Scholar 

  78. Lu H, Rateri DL, Daugherty A. Immunostaining of mouse atherosclerotic lesions. In: Sreejayan N and Ren J (Eds) Vascular Biology Protocols, Methods in Mol Med, vol 139, 2007, Torowa, NJ, Humana Press Inc., pp. 77–94.

    Chapter  Google Scholar 

  79. Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P. Neutrophil elastase in human atherosclerotic plaques: production by macrophages, Circulation, 107(22), (2003), 2829–2836.

    Article  CAS  PubMed  Google Scholar 

  80. Callahan RJ, Bogdanov A Jr, Fischman AJ, Brady TJ, Weissleder R. Preclinical evaluation and phase I clinical trial of a 99mTc-labeled synthetic polymer used in blood pool imaging, AJR Am J Roentgenol, 171(1), (1998), 137–143.

    CAS  PubMed  Google Scholar 

  81. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor, Circulation, 115(17), (2007), 2292–2298.

    Article  CAS  PubMed  Google Scholar 

  82. Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis, Circulation, 118(18), (2008), 1802–1809.

    Article  PubMed  Google Scholar 

  83. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo, Circulation, 114(1), (2006), 55–62.

    Article  PubMed  Google Scholar 

  84. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes, Nat Chem Biol, 3(10), (2007), 668–677.

    Article  CAS  PubMed  Google Scholar 

  85. Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A Jr, Josephson L, Weissleder R. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate, Proc Natl Acad Sci USA, 101(33), (2004), 12294–12299.

    Article  CAS  PubMed  Google Scholar 

  86. Shepherd J, Hilderbrand SA, Waterman P, Heinecke JW, Weissleder R, Libby P. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages, Chem Biol, 14(11), (2007), 1221–1231.

    Article  CAS  PubMed  Google Scholar 

  87. Park K, Hong HY, Moon HJ, Lee BH, Kim IS, Kwon IC, Rhee K. A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides, J Control Release, 128(3), (2008), 217–223.

    Article  CAS  PubMed  Google Scholar 

  88. Cheng Z, Levi J, Xiong Z, Gheysens O, Keren S, Chen X, Gambhir SS. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice, Bioconjug Chem, 17(3), (2006), 662–669.

    Article  CAS  PubMed  Google Scholar 

  89. Kovar JL, Volcheck W, Sevick-Muraca E, Simpson MA, Olive DM. Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models, Anal Biochem, 384(2), (2009), 254–262.

    Article  CAS  PubMed  Google Scholar 

  90. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging, Circulation, 107(19), (2003), 2453–2458.

    Article  CAS  PubMed  Google Scholar 

  91. Trivedi RA, Mallawarachi C, U-King-Im JM, Graves MJ, Horsley J, Goddard MJ, Brown A, Wang L, Kirkpatrick PJ, Brown J, Gillard JH. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages, Arterioscler Thromb Vasc Biol, 26(7), (2006), 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  92. Tang TY, Howarth SP, Li ZY, Miller SR, Graves MJ, U-King-Im JM, Trivedi RA, Walsh SR, Brown AP, Kirkpatrick PJ, Gaunt ME, Gillard JH. Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques contralateral to symptomatic carotid stenosis: an ultra small superparamagnetic iron oxide enhanced magnetic resonance study, J Neurol Neurosurg Psychiatry, 78(12), (2007), 1337–1343.

    Article  PubMed  Google Scholar 

  93. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis, Circulation, 117(3), (2008), 379–387.

    Article  CAS  PubMed  Google Scholar 

  94. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis, Circulation, 114(14), (2006), 1504–1511.

    Article  CAS  PubMed  Google Scholar 

  95. McCarthy JR, Patel P, Botnaru I, Haghayeghi P, Weissleder R, Jaffer FA. Multimodal nanoagents for the detection of intravascular thrombi, Bioconjug Chem, 20(6), (2009), 1251–1255.

    Article  CAS  PubMed  Google Scholar 

  96. Cormode DP, Skajaa T, Fayad ZA, Mulder WJ. Nanotechnology in medical imaging: probe design and applications, Arterioscler Thromb Vasc Biol, 29(7), (2009), 992–1000.

    Article  CAS  PubMed  Google Scholar 

  97. Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD, Wickline SA, Lanza GM. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med, 53(3), (2005), 621–627.

    Article  CAS  PubMed  Google Scholar 

  98. Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors, Nat Med., 13(3), (2007), 372–377.

    Article  CAS  PubMed  Google Scholar 

  99. Demos SM, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, Klegerman M, McPherson DD. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement, J Am Coll Cardiol, 33(3), (1999), 867–875.

    Article  CAS  PubMed  Google Scholar 

  100. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques, Circulation, 104(11), (2001), 1280–1285.

    Article  CAS  PubMed  Google Scholar 

  101. Neubauer AM, Sim H, Winter PM, Caruthers SD, Williams TA, Robertson JD, Sept D, Lanza GM, Wickline SA. Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging, Magn Reson Med, 60(6), (2008), 1353–1361.

    Article  PubMed  Google Scholar 

  102. Frias JC, Williams KJ, Fisher EA, Fayad ZA. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques, J Am Chem Soc, 126(50), (2004), 16316–16317.

    Article  CAS  PubMed  Google Scholar 

  103. Li H, Gray BD, Corbin I, Lebherz C, Choi H, Lund-Katz S, Wilson JM, Glickson JD, Zhou R. MR and fluorescent imaging of low-density lipoprotein receptors, Acad Radiol, 11(11), (2004), 1251–1259.

    Article  PubMed  Google Scholar 

  104. Hayek SS, Sharma R, Kwon S, Sharma A, Chen CJ. Temperature and magnetic resonance characteristics of zinc, manganese, gadolinium, gold, iron magnetic nanoparticles and cytokine synergy in hyperthermia, J Biomed Sci Eng, 1(3), (2008), 147–209.

    Article  Google Scholar 

  105. Sharma R, Sharma A, Chen CJ. Temperature and magnetic moment characteristics of MNB0.5BZNB0.5BGDBXBFEB(2-X)BOB4B magnetic nanoparticles in Hyperthermia, Nanotech Res J, 2(3), (2008), 26–45.

    Google Scholar 

  106. Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA. Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles, Magn Reson Med, 52(6), (2004), 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  107. Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ. In vivo visualization of gene expression using magnetic resonance imaging, Nat Biotechnol, 18(3), (2000), 321–325.

    Article  CAS  PubMed  Google Scholar 

  108. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), (2005), 538–544.

    Article  CAS  PubMed  Google Scholar 

  109. Allen M, Bulte JW, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents, Magn Reson Med, 54(4), (2005), 807–812.

    Article  CAS  PubMed  Google Scholar 

  110. Winter PM, Cai K, Chen J, Adair CR, Kiefer GE, Athey PS, Gaffney PJ, Buff CE, Robertson JD, Caruthers SD, Wickline SA, Lanza GM. Targeted PARACEST nanoparticle contrast agent for the detection of fibrin, Magn Reson Med, 56(6), (2006), 1384–1388.

    Article  CAS  PubMed  Google Scholar 

  111. Sharma R. Nanoparticles that facilitate imaging of biological tissue and methods of forming the same. United States Patent Application 20090220434.

    Google Scholar 

  112. Bovey F, Jelinsky L, Mirau P. Nuclear Magnetic Resonance Spectroscopy. San Diego, Academic Press, 1988.

    Google Scholar 

  113. Lanza GM, Abendschein DR, Yu X, Winter PM, Karukstis KK, Scott MJ, Fuhrhop RW, Scherrer DE, Wickline SA. Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology, Acad Radiol, 9(2), (2002), S330–S331.

    Article  PubMed  Google Scholar 

  114. Oltrona L, Speidel CM, Recchia D, Wickline SA, Eisenberg PR, Abendschein DR. Inhibition of tissue factor-mediated coagulation markedly attenuates stenosis after balloon-induced arterial injury in minipigs, Circulation, 96(2), (1997), 646–652.

    CAS  PubMed  Google Scholar 

  115. Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A, Klegerman M, McPherson DD. Intravascular ultrasound molecular imaging of atheroma components in vivo, J Am Coll Cardiol, 43(3), (2004), 453–460.

    Article  PubMed  Google Scholar 

  116. Botnar RM, Buecker A, Wiethoff AJ, Parsons EC Jr, Katoh M, Katsimaglis G, Weisskoff RM, Lauffer RB, Graham PB, Gunther RW, Manning WJ, Spuentrup E. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent, Circulation, 110(11), (2004), 1463–1466.

    Article  PubMed  Google Scholar 

  117. Caruthers SD, Neubauer AM, Hockett FD, Lamerichs R, Winter PM, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 Tesla, Invest Radiol, 41(3), (2006), 305–312.

    Article  PubMed  Google Scholar 

  118. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles, Circulation, 108(18), (2003), 2270–2274.

    Article  CAS  PubMed  Google Scholar 

  119. Cyrus T, Abendschein DR, Caruthers SD, Harris TD, Glattauer V, Werkmeister JA, Ramshaw JA, Wickline SA, Lanza GM. MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles, J Cardiovasc Magn Reson, 8(3), (2006), 535–541.

    Article  PubMed  Google Scholar 

  120. Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le Bas JF, Blezer E, Rausch M, Brochet B, Foster-Gareau P, Balériaux D, Gaillard S, Dousset V. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging, Invest Radiol, 39(10), (2004), 619–625.

    Article  CAS  PubMed  Google Scholar 

  121. Trivedi RA, U-King-Im JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI, Stroke, 35(7), (2004), 1631–1635.

    Article  PubMed  Google Scholar 

  122. Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging, Circulation, 109(23), (2004), 2890–2896.

    Article  CAS  PubMed  Google Scholar 

  123. Perez JM, Josephson L, O’Loughlin T, Högemann D, Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions, Nat Biotechnol, 20(8), (2002), 816–820.

    CAS  PubMed  Google Scholar 

  124. Jaffer FA, Libby P, Weissleder R. Optical and multimodal molecular imaging insight into atherosclerosis, Arterioscler Thromb Vasc Biol, 29(7), (2009), 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  125. Sharma R, Kwon S. New applications of nanoparticles in cardiovascular imaging, J Exp Nanosci, 2(2), (2007), 139–146.

    Google Scholar 

  126. Bagnato C, Thumar J, Mayya V, Hwang S, Zebroski H, Claffey KP, Haudenschild C, Eng JK, Lungren DH, Han DK. Proteomics analysis of human coronary atherosclerostic plaque, Mol Cell Proteomics, 6, (2007), 1088–1102.

    Article  CAS  PubMed  Google Scholar 

  127. Sharma R. Troponin T. A search of superparamagnetic iron-oxide bound antitroponin nanoparticle for magnetic resonance imaging, Int J Biological Frontiers, 16(2), (2010), 7–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sharma, R., Katz, J. (2011). Evaluation Criteria of Carotid Artery Atherosclerosis: Noninvasive Multimodal Imaging and Molecular Imaging. In: Suri, J., Kathuria, C., Molinari, F. (eds) Atherosclerosis Disease Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7222-4_27

Download citation

Publish with us

Policies and ethics