Skip to main content

Electrochemical Sensors for Environmental Analysis

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

The electrochemical sensors, according to IUPAC definitions and classification, are a category of chemical sensors [1], designed by coupling the receptor part of the device to an electrochemical transducer. The transducer transforms the analytical information originating from the electrochemical interaction analyte-electrode into a measurable electrical signal. A large number of electrochemical sensors, including biosensors, are based on chemically modified electrodes [2, 3].

The electrochemical sensors are compact, portable, and simple to handle instruments, able to provide analytical information in a real time, without or with a minimum sample preparation. These performances, in concert with their sensitivity, selectivity, and low cost, make them suitable for infield and online environmental analysis [4–7] and an excellent complement to the expensive and time-consuming off-sitechromatographic and adsorption or emission spectrometric methods, currently applied in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hulanicki A, Glab S, Ingman F (1991) Chemical sensors definition and classification. Pure Appl Chem 63:1247–1250

    Google Scholar 

  2. Thévenot D, Toth K, Durst R, Wilson G (1999) Electrochemical biosensors. Recommended definitions and classification. Pure Appl Chem 17:2333–2348

    Google Scholar 

  3. Durst R, Bäumner A, Murray R, Buck R, Andrieux P (1997) Chemically modified electrodes: recommended terminology and definitions. Pure Appl Chem 69:1317–1323

    CAS  Google Scholar 

  4. Brett C (2001) Electrochemical sensors for environmental monitoring. Strategies and examples. Pure Appl Chem 73:1969–1977

    CAS  Google Scholar 

  5. Hanrahan G, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 6:657–664

    CAS  Google Scholar 

  6. Wang J (2004) Electrochemical sensors for environmental monitoring: a review of recent technology. NERL U.S. EPA, Las Vegas

    Google Scholar 

  7. Rodriguez-Mozaz S, Marco M-P, Lopez de Alda MJ, Barceló D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76:723–752

    CAS  Google Scholar 

  8. Official methods of analysis of AOAC International. http://www.eoma.aoac.org/. Accessed 27 Sept 2011

  9. Bakker E (2004) Electrochemical sensors. Anal Chem 76:3285–3298

    CAS  Google Scholar 

  10. Bakker E, Quin Y (2006) Electrochemical sensors. Anal Chem 78:3965–3984

    CAS  Google Scholar 

  11. Gupta V (2005) Potentiometric sensors for heavy metals-an overview. Chimia Int J Chem 59:209–217

    CAS  Google Scholar 

  12. Cavicchioli A, La-Scalea MA, Gutz IGR (2004) Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanalysis 16:698–711

    Google Scholar 

  13. Toghill K, Min L, Compton R (2011) Electroanalytical determination of antimony. Int J Electrochem Sci 6:3057–3076

    CAS  Google Scholar 

  14. Niedzielski P, Siepak M (2003) Analytical methods for determining arsenic, antimony and selenium in environmental samples. Polish J Environ Stud 12:653–667

    CAS  Google Scholar 

  15. Locatelli C (1997) Anodic and cathodic stripping voltammetry in the simultaneous determination of toxic metals in environmental samples. Electroanalysis 9:1014–1017

    CAS  Google Scholar 

  16. Nriagu J (1998) Thallium in the environment. Advances in environmental science and technology, volume 30. Wiley, N.Y., USA

    Google Scholar 

  17. Brisson M, Ekechkwu A (2009) Beryllium: environmental analysis and monitoring. RSC Publishing, Cambridge

    Google Scholar 

  18. Morita M, Yoshinaga J, Edmondst J (1998) The determination of mercury species in environmental and biological samples. Pure Appl Chem 70:1585–1615

    CAS  Google Scholar 

  19. USEPA (1979) Water related fate of the 129 priority pollutants, vol. 1 EP-440/4-79-029A. Washington

    Google Scholar 

  20. Standard methods for the examination of water and wastewater. http://www.standardmethods.org/. Accessed 27 Sept 2011

  21. Zlatev R, Stoytcheva M, Valdez B, Magnin J-P, Ozil P (2006) Simultaneous determination of species by differential alternative pulses voltammetry. Electrochem Commun 8:1699–1706

    CAS  Google Scholar 

  22. Verma N, Singh M (2005) Sensors for heavy metals. Biometals 18:121–129

    CAS  Google Scholar 

  23. Turdean G (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem 2011:15 doi:10.4061/2011/343125

    Google Scholar 

  24. Jaffrezic-Renault N, Dzyadevych S (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8:2569–2588

    Google Scholar 

  25. Gupta V (2010) Potentiometric sensors for inorganic anions based on neutral carriers-an invited review article. Arab J Sci Eng 35(2A):7–25, 10

    CAS  Google Scholar 

  26. Manisankar P, Viswanathan S, Vedhi G (2010) Analysis of pesticide residue using electroanalytical techniques. In: Rathore H, Nollet L (eds) Handbook of pesticides. Methods of pesticides residues analysis. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  27. Garrido E, Delerue-Matos C, Lima J, Brett A (2004) Electrochemical methods in pesticides control. Anal Lett 3:1755–1791

    Google Scholar 

  28. Smyth F, Smyth M (1987) Electrochemical analysis of organic pollutants. Pure Appl Chem 59:245–256

    CAS  Google Scholar 

  29. Tonle I, Ngameni E (2011) Voltammetric analysis of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world-Trends in pesticides analysis. InTech, Croatia

    Google Scholar 

  30. Stoytcheva M (2011) Organophosphorus pesticides analyses. In: Stoytcheva M (ed) Pesticides in the modern world-trends in pesticides analysis. InTech, Croatia

    Google Scholar 

  31. Goicolea M, Gómez-Caballero A, Barrio R (2011) New materials in electrochemical sensors for pesticides monitoring. In: Stoytcheva M (ed) Pesticides in the modern world-trends in pesticides analysis. InTech, Croatia

    Google Scholar 

  32. Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J (2008) Immunosensors for detection of pesticides residues. Biosens Bioelectron 23:1577–1587

    CAS  Google Scholar 

  33. Van Dyk JS, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307

    Google Scholar 

  34. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423

    CAS  Google Scholar 

  35. López M, López-Cabarcos E, López-Ruiz B (2006) Organic phase enzyme electrodes. Biomol Eng 23:135–147

    Google Scholar 

  36. Palchetti I, Laschi S, Mascini M (2009) Electrochemical biosensor technology: application to pesticide detection. Methods Mol Biol 504:115–126

    CAS  Google Scholar 

  37. Xu X, Ying Y (2011) Microbial biosensors for environmental monitoring and food analysis. Food Rev Int 27:300–329

    Google Scholar 

  38. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    CAS  Google Scholar 

  39. Mulchandani A (2011) Microbial biosensors for organophosphate pesticides. Appl Biochem Biotechnol 165:687–699

    CAS  Google Scholar 

  40. Stoytcheva M (2010) Enzyme vs. bacterial electrochemical sensors for organophosphorus pesticides quantification. In: Somerset V (ed) Intelligent and biosensor. InTech, Croatia

    Google Scholar 

  41. Palchetti B, Mascini M (2008) Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem 391:455–471

    CAS  Google Scholar 

  42. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    CAS  Google Scholar 

  43. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Stoytcheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Stoytcheva, M., Zlatev, R. (2014). Electrochemical Sensors for Environmental Analysis. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_449

Download citation

Publish with us

Policies and ethics