Skip to main content

Multiscale Modeling

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 187 Accesses

Introduction

Development of a deep understanding of fuel cells’, batteries’, and supercapacitors’ operation principles will help on achieving significant advances on their controlled design and optimization in both applied science and industry communities.

Porous electrodes are the pivotal components of modern electrochemical power generators. Porous electrodes are inherently multiscale systems as they are made of multiple coexisting materials, each of them ensuring a specific function in their operation (Fig. 1). Such electrodes’ structural complexity has been historically driven by the needs of reducing the device cost and of enhancing its efficiency, stability, and safety. The use of nano-engineered materials and chemical additives (in the case of batteries) allowed a significant progress toward these goals. For instance, in the case of polymer electrolyte membrane fuel cells (PEMFCs), the electrodes are constituted by metallic nanoparticles of few nanometers size having the role...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franco AA (ed) (2013) Polymer electrolyte fuel cells: science, applications and challenges. Pan Stanford, Singapore

    Google Scholar 

  2. Franco AA (2013) Multiscale modeling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3(32):13027–13058

    Google Scholar 

  3. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359

    Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845

    CAS  Google Scholar 

  5. Boudghene Stambouli A, Traversa E (2002) Renew Sustain Energy Rev 6:433

    Google Scholar 

  6. Christensen J et al (2012) J Electrochem Soc 159(2):R1

    CAS  Google Scholar 

  7. Holzapfel GA, Gasser TC (2001) Comput Method Appl Mech Eng 190:4379

    Google Scholar 

  8. Franco AA (2010) A multiscale modeling framework for the transient analysis of PEM fuel cells – from the fundamentals to the engineering practice. Habilitation Manuscript (H.D.R.), UniversitÕ Claude Bernard Lyon 1. http://tel.archives-ouvertes.fr/docs/00/74/09/67/PDF/Alejandro_A_Franco_Manuscript_HDR_July_12_2010.pdf

  9. Madec L, Falk L, Plasari E (2001) Chem Eng Sci 56:1731

    CAS  Google Scholar 

  10. Mandin P, Cense JM, Cesimiro F, Gbado C, Lincot D (2007) Comput Chem Eng 31(8):980

    CAS  Google Scholar 

  11. Reuter K, Deutschmann O (ed) (2009) Wiley-VCH, Weinberg

    Google Scholar 

  12. Sheppard D, Terrell R, Henkelman G (2008) Optimization methods for finding minimum energy paths. J Chem Phys 128:134106

    Google Scholar 

  13. Ferreira de Morais R, Loffreda D, Sautet P, Franco AA (2011) A multi-scale modeling methodology to predict electrochemical observables from ab initio data: application to the ORR in a Pt(111)-based PEMFC. Electrochim Acta 56(28):10842

    CAS  Google Scholar 

  14. Franco AA, Schott P, Jallut C, Maschke B (2007) Fuel Cells 7:99

    CAS  Google Scholar 

  15. Franco AA, Schott P, Jallut C, Maschke B (2006) J Electrochem Soc 153(6):A1053

    CAS  Google Scholar 

  16. Cahn J, Hilliard J (1958) J Chem Phys 28(2):258

    CAS  Google Scholar 

  17. Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004) Phys Rev E 69:021603

    CAS  Google Scholar 

  18. Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004) Phys Rev E 69:021604

    CAS  Google Scholar 

  19. Kim J (2007) Commun Nonlin Sci Numer Simulat 12:1560

    Google Scholar 

  20. Choo SM, Chung SK, Kim KI (2000) Comput Math Appl 39:229

    Google Scholar 

  21. Franco AA, Filhol JS, Doublet ML (2013) in preparation

    Google Scholar 

  22. Dalverny A-L, Filhol J-S, Doublet M-L (2011) J Mater Chem 21:10134

    CAS  Google Scholar 

  23. Khatib R, Dalverny AL, Saubanère M, Gaberscek M, Doublet ML (2013) J Phys Chem C 117:837

    CAS  Google Scholar 

  24. Singh GK, Ceder G, Bazant MZ (2008) Electrochim Acta 53(26):7599

    CAS  Google Scholar 

  25. Bai P, Cogswell DA, Bazant MZ (2011) Nano Lett 11:4890

    CAS  Google Scholar 

  26. Deng J, Wagner GJ, Muller RP (2013) J Electrochem Soc 160(3):A487

    CAS  Google Scholar 

  27. Malek K, Eikerling M, Wang Q, Navessin T, Liu Z (2007) J Phys Chem C 111:13627

    CAS  Google Scholar 

  28. Damasceno Borges D, Malek K, Mossa S, Gebel G, Franco AA (2012) ECS Trans (in press)

    Google Scholar 

  29. Damasceno Borges D, Franco AA, Malek K, Gebel G, Mossa S (2013) Nanoletters (submitted)

    Google Scholar 

  30. Lopes Oliveira LF, Laref S, Mayousse E, Jallut C, Franco AA (2012) Phys Chem Chem Phys 14:10215

    Google Scholar 

  31. Franco AA (2013) ECS Trans (in press)

    Google Scholar 

  32. Cheah SK, Sycardi O, Guetaz L, Lemaire O, Gelin P, Franco AA (2011) J Electrochem Soc 158(11):B1358

    CAS  Google Scholar 

  33. Franco AA, Passot S, Fugier P, Billy E, Guillet N, Guetaz L, De Vito E, Mailley S (2009) J Electrochem Soc 156:B410

    CAS  Google Scholar 

  34. Franco AA, Coulon R, Ferreira de Morais R, Cheah S-K, Kachmar A, Gabriel MA (2009) ECS Trans 25(1):65

    CAS  Google Scholar 

  35. Franco AA, Guinard M, Barthe B, Lemaire O (2009) Electrochim Acta 54(22):5267

    CAS  Google Scholar 

  36. Franco AA, Gerard M (2008) J Electrochem Soc 155(4):B367

    CAS  Google Scholar 

  37. Franco AA, Tembely M (2007) J Electrochem Soc 154(7):B712

    CAS  Google Scholar 

  38. Malek K, Franco AA (2011) J Phys Chem B 115(25):8088

    CAS  Google Scholar 

  39. Franco AA, Malek K (2012) A microstructural resolved model of the membrane degradation in PEMFCs, in preparation

    Google Scholar 

  40. Franco AA (2012) PEMFC degradation modeling and analysis. In: Hartnig C, Roth C (ed)polymer electrolyte membrane and direct methanol fuel cell technology (PEMFCs and DMFCs) – volume 1: fundamentals and performance. Woodhead, Cambridge

    Google Scholar 

  41. www.modeling-electrochemistry.com

  42. Greeley J, Nørskov JK (2007) Electrochim Acta 52:5829

    CAS  Google Scholar 

  43. Franco AA, Xue KH (2013) Carbon-based electrodes for lithium air batteries: scientific and technological challenges from a modeling perspective. ECS Journal of Solid State Science and Technology 2(10): M3084

    CAS  Google Scholar 

  44. Baaiu A, Couenne F, Jallut C, Lefèvre L, Legorrec Y, Maschke B (2009) Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems 15(3): 233–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro A. Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Franco, A.A. (2014). Multiscale Modeling. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_329

Download citation

Publish with us

Policies and ethics