Skip to main content

Molecular Basis of Protective Anti-Inflammatory Signalling by Cyclic AMP in the Vascular Endothelium

  • Chapter
  • First Online:
Systems Biology for Signaling Networks

Part of the book series: Systems Biology ((SYSTBIOL))

  • 1943 Accesses

Abstract

Prototypical second messenger cyclic AMP (cAMP) was originally thought to mediate its effects through activation of cAMP-dependent protein kinase (PKA). However, it is now clear that cells possess multiple alternative sensors of cAMP accumulation, of which the “exchange protein directly activated by cAMP” (Epac) proteins have been studied most intensively. This article will describe recent insights made into the molecular mechanisms by which Epac proteins mediate key protective effects of cAMP on two specific aspects of vascular endothelial cell function, namely barrier function and suppression of inflammatory signalling. It will also examine how integrative and unbiased global approaches are currently being deployed to answer several wider questions that have arisen from the identification of Epac as a trigger of gene transcription events and the E3 ubquitin ligase component “suppressor of cytokine signalling-3” (SOCS-3) as a key gene target regulated by this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander WS, Hilton DJ (2004) The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 22:503–529

    CAS  PubMed  Google Scholar 

  • Amsen EM, Pham N, Pak Y et al (2006) The guanine nucleotide exchange factor CNrasGEF regulates melanogenesis and cell survival in melanoma cells. J Biol Chem 281:121–128

    CAS  PubMed  Google Scholar 

  • Anhuf D, Weissenbach M, Schmitz J et al (2000) Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation. J Immunol 165:2535–2543

    CAS  PubMed  Google Scholar 

  • Baillie GS (2009) Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J 276:1790–1799

    CAS  PubMed  Google Scholar 

  • Baumer Y, Drenckhahn D, Waschke J (2008) cAMP induced Rac 1-mediated cytoskeletal reorganization in microvascular endothelium. Histochem Cell Biol 129:765–778

    CAS  PubMed  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3:710–708

    Google Scholar 

  • Bergamin E, Wu J, Hubbard SR (2006) Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Structure 14:1285–1292

    CAS  PubMed  Google Scholar 

  • Biel M, Michalakis S (2009) Cyclic nucleotide-gated channels. Handb Exp Pharmacol 191:111–136

    CAS  PubMed  Google Scholar 

  • Birukova AA, Zagranichnaya T, Fu P et al (2007) Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res 313:2504–2520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blease K, Burke-Gaffney A, Hellewell PG (1998) Modulation of cell adhesion molecule expression and function on human lung microvascular endothelial cells by inhibition of phosphodiesterases 3 and 4. Br J Pharmacol 124:229–237

    CAS  PubMed  Google Scholar 

  • Borland G, Bird RJ, Palmer TM et al (2009) Activation of protein kinase Calpha by EPAC1 is required for the ERK- and CCAAT/enhancer-binding protein beta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J Biol Chem 284:17391–17403

    CAS  PubMed  Google Scholar 

  • Bornfeldt KE, Krebs EG (1999) Crosstalk between protein kinase A and growth factor receptor signaling pathways in arterial smooth muscle. Cell Signal 11:465–477

    CAS  PubMed  Google Scholar 

  • Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31:680–686

    CAS  PubMed  Google Scholar 

  • Buday L, Downward J (2008) Many faces of Ras activation. Biochim Biophys Acta 1786:178–187

    CAS  PubMed  Google Scholar 

  • Christensen AE, Selheim F, de Rooij J et al (2003) cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278:35394–35402

    CAS  PubMed  Google Scholar 

  • Cotran RS, Gimbrone Jr MA, Bevilacqua MP et al (1986) Induction and detection of a human endothelial activation antigen in vivo. J Exp Med 164:661–666

    CAS  PubMed  Google Scholar 

  • Croker BA, Krebs DL, Zhang JG et al (2003) SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4:540–545

    CAS  PubMed  Google Scholar 

  • D’Cruz D (1998) Vasculitis in systemic lupus erythematosus. Lupus 7:270–274

    PubMed  Google Scholar 

  • Dalpke AH, Opper S, Zimmermann S et al (2001) Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J Immunol 166:7082–7089

    CAS  PubMed  Google Scholar 

  • Davson H, Zlokovic B, Rakic L, Segal MB (1993) History and basic concepts. In: Havson H (ed) An introduction to the blood–brain barrier, CRC Press, Boca Raton, FL

    Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    PubMed  Google Scholar 

  • de Rooij J, Rehmann H, van Triest M et al (2000) Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275:20829–20836

    PubMed  Google Scholar 

  • De Souza D, Fabri LJ, Nash A et al (2002) SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry 41:9229–9236

    PubMed  Google Scholar 

  • Descombes P, Schibler U (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67:569–579

    CAS  PubMed  Google Scholar 

  • Dhillon AS, Pollock C, Steen H et al (2002) Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 22:3237–3246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dodge-Kafka L, Langeberg L, Scott JD (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins. Circ Res 98:993–1001

    CAS  PubMed  Google Scholar 

  • Doyle ME, Egan JM (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113:546–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumaz N, Marais R (2003) Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J Biol Chem 278:29819–29823

    CAS  PubMed  Google Scholar 

  • Dumaz N, Marais R (2005) Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 272:3491–3504

    CAS  PubMed  Google Scholar 

  • El Kasmi KC, Holst J, Coffre M et al (2006) General nature of the STAT3-activated anti-inflammatory response. J Immunol 177:7880–7888

    CAS  PubMed  Google Scholar 

  • Enserink JM, Price LS, Methi T et al (2004) The cAMP-Epac-Rap1 pathway regulates cell spreading and cell adhesion to laminin-5 through the alpha3beta1 integrin but not the alpha6beta4 integrin. J Biol Chem 279:44889–44896

    CAS  PubMed  Google Scholar 

  • Eyckerman S, Broekaert D, Verhee A et al (2000) Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett 486:33–37

    CAS  PubMed  Google Scholar 

  • Fang Y, Olah ME (2007) Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 322:1189–1200

    CAS  PubMed  Google Scholar 

  • Fisslthaler B, Popp R, Kiss L et al (1999) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 401:493–497

    CAS  PubMed  Google Scholar 

  • Gasperini S, Crepaldi L, Calzetti F et al (2002) Interleukin-10 and cAMP-elevating agents cooperate to induce suppressor of cytokine signaling-3 via a protein kinase A-independent signal. Eur Cytokine Netw 13:47–53

    CAS  PubMed  Google Scholar 

  • Gerhartz C, Heesel B, Sasse J et al (1996) Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J Biol Chem 271:12991–12998

    CAS  PubMed  Google Scholar 

  • Gimbrone MAJ (1995) Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol 75:67B–70B

    CAS  PubMed  Google Scholar 

  • Guschin D, Rogers N, Briscoe J et al (1995) A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J 14:1421–1429

    CAS  PubMed  Google Scholar 

  • Haffner MC, Jurgeit A, Berlato C et al (2008) Interaction and functional interference of glucocorticoid receptor and SOCS1. J Biol Chem 283:22089–22096

    CAS  PubMed  Google Scholar 

  • Heinrich PC, Behrmann I, Müller-Newen G et al (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334:297–314

    CAS  PubMed  Google Scholar 

  • Heinrich PC, Behrmann I, Haan S et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    CAS  PubMed  Google Scholar 

  • Hör S, Ziv T, Admon A et al (2009) Stable isotope labeling by amino acids in cell culture and differential plasma membrane proteome quantitation identify new substrates for the MARCH9 transmembrane E3 ligase. Mol Cell Proteom 8:1959–1971

    Google Scholar 

  • Horvath CM (2000) STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 25:496–502

    CAS  PubMed  Google Scholar 

  • Huston E, Lynch MJ, Mohamed A et al (2008) EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation. Proc Natl Acad Sci USA 105:12791–12796

    CAS  PubMed  Google Scholar 

  • Islam D, Zhang N, Wang P et al (2009) Epac is involved in cAMP-stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic alpha- and intestinal L-cell lines. Am J Physiol Endocrinol Metab 296:E174–E181.

    CAS  PubMed  Google Scholar 

  • Kallen KJ (2002) The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. Biochim Biophys Acta 1592:323–343

    CAS  PubMed  Google Scholar 

  • Kamura T, Maenaka K, Kotoshiba S et al (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18:3055–3065

    CAS  PubMed  Google Scholar 

  • Kang G, Chepurny OG, Holz GG (2001) cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol 536:375–385

    CAS  PubMed  Google Scholar 

  • Kaptein A, Paillard V, Saunders M (1996) Dominant negative stat3 mutant inhibits interleukin-6-induced Jak-STAT signal transduction. J Biol Chem 271:5961–5964

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N et al (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279

    CAS  PubMed  Google Scholar 

  • Keiper M, Stope MB, Szatkowski D et al (2004) Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem 279:46497–44508

    Google Scholar 

  • Kooistra MR, Corada M, Dejana E et al (2005) Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 579:4966–4972

    CAS  PubMed  Google Scholar 

  • Kuiperij HB, de Rooij J, Rehmann H et al (2003) Characterisation of PDZ-GEFs, a family of guanine nucleotide exchange factors specific for Rap1 and Rap2. Biochim Biophys Acta 1593:141–149

    CAS  PubMed  Google Scholar 

  • Lang P, Gesbert F, Delespine-Carmagnat M et al (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510–519

    CAS  PubMed  Google Scholar 

  • Lang, R, Pauleau AL, Parganas E et al (2003) SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 4:546–550

    CAS  PubMed  Google Scholar 

  • Le Y, Zhu BM, Harley B et al (2007) SOCS3 protein developmentally regulates the chemokine receptor CXCR4-FAK signaling pathway during B lymphopoiesis. Immunity 27:811–823

    CAS  PubMed  Google Scholar 

  • Lehmann U, Schmitz J, Weissenbach M et al (2003) SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J Biol Chem 278:661–671

    CAS  PubMed  Google Scholar 

  • Li W, Nishimura R, Kashishian A et al (1994) A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 14:509–517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Asuri S, Rebhun JF et al (2006) The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 281:2506–2514

    CAS  PubMed  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    CAS  PubMed  Google Scholar 

  • Ligon LA, Karki S, Tokito M et al (2001) Dynein binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol 3:913–917

    CAS  PubMed  Google Scholar 

  • Liu C, Takahashi M, Li Y et al (2008) Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2. Mol Cell Biol 28:7109–7125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenowicz MJ, Fernandez-Borja M, Kooistra MR et al (2008) PKA and Epac1 regulate endothelial integrity and migration through parallel and independent pathways. Eur J Cell Biol 87:779–792

    CAS  PubMed  Google Scholar 

  • Lotfi S, Li Z, Sun J et al (2006) Role of the exchange protein directly activated by cyclic adenosine 5'-monophosphate (Epac) pathway in regulating proglucagon gene expression in intestinal endocrine L cells. Endocrinology 147:3727–3736

    CAS  PubMed  Google Scholar 

  • Lust JA, Donovan KA, Kline MP et al (1992) Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4:96–100

    CAS  PubMed  Google Scholar 

  • Mansell A, Smith R, Doyle SL et al (2006) Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7:148–155

    CAS  PubMed  Google Scholar 

  • Marin V, Montero-Julian FA, Gres S et al (2001) The IL-6-soluble IL-6Ralpha autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. J Immunol 167:3435–3442

    CAS  PubMed  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    CAS  PubMed  Google Scholar 

  • Meierhofer D, Wang X, Huang L et al (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merbl Y, Kirschner MW (2009) Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proc Natl Acad Sci USA 106:2543–2548

    CAS  PubMed  Google Scholar 

  • Middleton J, Americh L, Gayon R et al (2004) Endothelial cell phenotypes in the rheumatoid synovium: activated, angiogenic, apoptotic and leaky. Arthritis Res Ther 6:60–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsuyama K, Sata M, Rose-John S (2006) Interleukin-6 trans-signaling in inflammatory bowel disease. Cytokine Growth Factor Rev 17:451–461

    CAS  PubMed  Google Scholar 

  • Morandini R, Ghanem G, Portier-Lemarie A et al (1996) Action of cAMP on expression and release of adhesion molecules in human endothelial cells. Am J Physiol 270:H807–H816

    CAS  PubMed  Google Scholar 

  • Muller-Newen G, Kohne C, Keul R et al (1996) Purification and characterization of the soluble interleukin-6 receptor from human plasma and identification of an isoform generated through alternative splicing. Eur J Biochem 236:837–842

    CAS  PubMed  Google Scholar 

  • Murakami M, Hibi M, Nakagawa N et al (1993) IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260:1808–1810

    CAS  PubMed  Google Scholar 

  • Naka T, Tsutsui H, Fujimoto M et al (2001) SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-gamma and IL-4 signaling in vivo. Immunity 14:535–545

    CAS  PubMed  Google Scholar 

  • Narazaki M, Witthuhn BA, Yoshida K et al (1994) Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gp130. Proc Natl Acad Sci USA 91:2285–2229

    Google Scholar 

  • Nerlov C (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17:318–324

    CAS  PubMed  Google Scholar 

  • Nicholson SE, De Souza D, Fabri LJ et al (2000) Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci USA 97:6493–6498

    CAS  PubMed  Google Scholar 

  • Nijholt IM, Dolga AM, Ostroveanu A et al (2008) Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation. Cell Signal 20:1715–1724

    CAS  PubMed  Google Scholar 

  • O'Connor KL, Mercurio AM (2001) Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells. J. Biol Chem 276:47895–47900

    PubMed  Google Scholar 

  • Orr SJ, Morgan NM, Buick RJ et al (2007a) SOCS3 targets Siglec 7 for proteasomal degradation and blocks Siglec 7-mediated responses. J Biol Chem 282:3418–3422

    CAS  PubMed  Google Scholar 

  • Orr SJ, Morgan NM, Elliott J et al (2007b) CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 109:1061–1068

    CAS  PubMed  Google Scholar 

  • O'Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109:S121–131

    Google Scholar 

  • Park BH, Qiang L, Farmer SR (2004) Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 24:8671–8680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen RK, Madsen L, Pedersen LM et al (2008) Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol 28:3804–3816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pober JS, Slowik MR, De Luca LG et al (1993) Elevated cyclic AMP inhibits endothelial cell synthesis and expression of TNF-induced endothelial leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1. J Immunol 150:5114–5123

    CAS  PubMed  Google Scholar 

  • Qiao J, Holian O, Lee BS et al (2008) Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am J Physiol Cell Physiol 295:C1161–C1168

    CAS  PubMed  Google Scholar 

  • Qiao J, Mei FC, Popov VL et al (2002) Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J Biol Chem 277:26581–26586

    CAS  PubMed  Google Scholar 

  • Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    CAS  PubMed  Google Scholar 

  • Rand JH (2003) The antiphospholipid syndrome. Annu Rev Med 54:409–424

    CAS  PubMed  Google Scholar 

  • Rehmann H, Arias-Palomo E, Hadders MA et al (2008) Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 455:124–127

    CAS  PubMed  Google Scholar 

  • Rehmann H, Das J, Knipscheer P et al (2006) Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439:625–628

    CAS  PubMed  Google Scholar 

  • Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    CAS  PubMed  Google Scholar 

  • Rui L, Yuan M, Frantz D et al (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398

    CAS  PubMed  Google Scholar 

  • Sands WA, Woolson HD, Milne GR et al (2006) Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells. Mol Cell Biol 26:6333–6346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki A, Inagaki-Ohara K, Yoshida T et al (2003) The N-terminal truncated isoform of SOCS3 translated from an alternative initiation AUG codon under stress conditions is stable due to the lack of a major ubiquitination site, Lys-6. J Biol Chem 278:2432–2436

    CAS  PubMed  Google Scholar 

  • Schmidt M, Sand C, Jakobs KH et al (2007) Epac and the cardiovascular system. Curr Opin Pharmacol 7:193–200

    CAS  PubMed  Google Scholar 

  • Schmitt JM, Stork PJ (2000) beta 2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein rap1 and the serine/threonine kinase B-Raf. J Biol Chem 275:25342–25350

    CAS  PubMed  Google Scholar 

  • Schmitz J, Dahmen H, Grimm C et al (2000) The cytoplasmic tyrosine motifs in full-length glycoprotein 130 have different roles in IL-6 signal transduction. J Immunol 164:848–854

    CAS  PubMed  Google Scholar 

  • Sehrawat S, Cullere X, Patel S et al (2008) Role of Epac1, an exchange factor for Rap GTPases, in endothelial microtubule dynamics and barrier function. Mol Biol Cell 19:1261–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shuai K, Horvath CM, Huang LH et al (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828

    CAS  PubMed  Google Scholar 

  • Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5:593–605

    CAS  PubMed  Google Scholar 

  • Simionescu N, Heltianu C, Antohe F et al (1982) Biochemically differentiated microdomains of the cell surface of capillary endothelium. Ann NY Acad Sci 401:132–149

    CAS  PubMed  Google Scholar 

  • Sobota RM, Müller PJ, Heinrich PC et al (2008) Prostaglandin E1 inhibits IL-6-induced MCP-1 expression by interfering specifically in IL-6-dependent ERK1/2, but not STAT3, activation. Biochem J 412:65–72

    CAS  PubMed  Google Scholar 

  • Stahl N, Boulton TG, Farruggella T et al (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263:92–95

    CAS  PubMed  Google Scholar 

  • Stahl N, Farruggella TJ, Boulton TG et al (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267:1349–1353

    CAS  PubMed  Google Scholar 

  • Starr R, Willson TR, Viney EM et al (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921

    CAS  PubMed  Google Scholar 

  • Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    CAS  PubMed  Google Scholar 

  • Tagwerker C, Flick K, Cui M et al (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5:737–748

    CAS  PubMed  Google Scholar 

  • Tang QQ, Grønborg M, Huang H et al (2005) Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci USA 102:9766–9771

    CAS  PubMed  Google Scholar 

  • Tichelli A, Gratwohl A (2008) Vascular endothelium as 'novel' target of graft-versus-host disease. Best Pract Res Clin Haematol 21:139–48

    Google Scholar 

  • Umenishi F, Narikiyo T, Vandewalle A et al (2006) cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. Biochim Biophys Acta 1758:1100–1105

    CAS  PubMed  Google Scholar 

  • Ungureanu D, Saharinen P, Junttila I et al (2002) Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 22:3316–3326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanhoutte PM (2009) Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J 73:595–601

    CAS  PubMed  Google Scholar 

  • Wang Z, Dillon TJ, Pokala V et al (2006) Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 26:2130–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weis SM (2008) Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol 15:243–249

    CAS  PubMed  Google Scholar 

  • Welm AL, Timchenko NA, Darlington GJ (1999) C/EBPalpha regulates generation of C/EBPbeta isoforms through activation of specific proteolytic cleavage. Mol Cell Biol 19:1695–1704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson HL, McFie PJ, Roesler WJ (2001) Characterization of domains in C/EBPalpha that mediate its constitutive and cAMP-inducible activities. Mol Cell Endocrinol 181:27–34

    CAS  PubMed  Google Scholar 

  • Woolson HD, Thomson VS, Rutherford C et al (2009) Selective inhibition of cytokine-activated extracellular signal-regulated kinase by cyclic AMP via Epac1-dependent induction of suppressor of cytokine signalling-3. Cell Signal 21:1706–1715

    CAS  PubMed  Google Scholar 

  • Xu D, Qu CK (2008) Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci 13:4925–4932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanaka Y, Nakajima K, Fukada T et al (1996) Differentiation and growth arrest signals are generated through the cytoplasmic region of gp130 that is essential for Stat3 activation. EMBO J 15:1557–1565

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Kaverina IN, Wang A et al (2004) A novel interaction between kinesin and p120 modulates p120 localization and function. J Biol Chem 279:9512–9521

    CAS  PubMed  Google Scholar 

  • Yarwood SJ, Borland G, Sands WA et al (2008) Identification of CCAAT/enhancer-binding proteins as exchange protein activated by cAMP-activated transcription factors that mediate the induction of the SOCS-3 gene. J Biol Chem 283:6843–6453

    Google Scholar 

  • Yasukawa H, Ohishi M, Mori H et al (2003) IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4:551–556

    CAS  PubMed  Google Scholar 

  • Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–65

    Google Scholar 

  • Zhang JG, Farley A, Nicholson SE et al (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 96:2071–2076

    CAS  PubMed  Google Scholar 

  • Zhang X, Odom DT, Koo SH et al (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102:4459–4464

    CAS  PubMed  Google Scholar 

  • Zimmerman GA, Albertine KH, Carveth HJ et al (1999) Endothelial activation in ARDS. Chest 116:18S–24S

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rutherford, C., Palmer, T.M. (2010). Molecular Basis of Protective Anti-Inflammatory Signalling by Cyclic AMP in the Vascular Endothelium. In: Choi, S. (eds) Systems Biology for Signaling Networks. Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5797-9_23

Download citation

Publish with us

Policies and ethics