Skip to main content

Abstract

Flavor is one of the most important characteristics of a food product, since people prefer to eat only food products with an attractive flavor (Voilley and Etiévant 2006). Flavor can be defined as a combination of taste, smell and/or trigeminal stimuli. Taste is divided into five basic ones, i.e. sour, salty, sweet, bitter and umami. Components that trigger the so-called gustatory receptors for these tastes are in general not volatile, in contrast to aroma. Aroma molecules are those that interact with the olfactory receptors in the nose cavity (Firestein 2001). Confusingly, aroma is often referred to as flavor. Trigeminal stimuli cause sensations like cold, touch, and prickling. The current chapter only focuses on the encapsulation of the aroma molecules.

Aroma consists of many volatile and odorous organic molecules. Most of them are in a gas or liquid state, but also some solid materials may have a distinct smell (e.g. vanillin and menthol). In general, aroma molecules have a low MW (often between 100 and 250) and can be classified as hydrocarbons, alcohols, aldehydes, ketones, esters, acids, sulphides, etc. Typical examples of aroma molecules are shown in Fig. 5.1. Most of the aroma molecules are lipophilic, but some are hydrophilic (their logarithmic values of the octanol–water partition coefficient, log P, ranges from −1 to 7). Aroma molecules can be either added to food products, produced during processing of the food product (the so-called processing or reaction flavor) or are formed during cooking of the food product. Aroma can reach the nose cavity directly when the food is not yet in the mouth (ortho-nasally: direct smell) or via the oral cavity (retro-nasally). Gas and thus aroma is transferred from the oral cavity to the nasal cavity via nasal airflow, which is influenced by mouth action like saliva production, mastication and swallowing. Aroma release from food products before and after eating is controlled by both thermodynamic and kinetic parameters, which depends on the aroma characteristics and on the composition and the physical state of the matrix. These parameters will determine the volatility of the flavor compounds and their resistance to mass transfer between different phases, especially from the product to air (Druaux and Voilley 1997; Van Ruth and Roozen 2002; De Roos 2003). Proper choice of food composition and food microstructures may thus control aroma release during food product preparation and consumption. Encapsulation might be one of the tools in such a design (Porzio 2007a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajisaka N, Hara K, Mikuni K, Hara K (2000) Effects of branched cyclodextrins on the solubility and stability of terpenes. Biosci Biotechnol Biochem 64(4):731–734

    Article  CAS  Google Scholar 

  • Angelich A (2005) Encapsulation technology. Manuf Confectioner 85(10):51–55

    Google Scholar 

  • Bakker MAE, Galema SA, Visser A (1999) Microcapsules of gelatin and carboxy methyl cellulose. European Patent EP937496

    Google Scholar 

  • Baranauskienė R, Venskutonis PR, Galdikas A, Senulienė D, Šetkus A (2005) Testing of microencapsulated flavor by electronic nose and SPME-GC. Food Chem 92:45–54

    Article  Google Scholar 

  • Baranauskienė R, Bylaité E, Žukauskaité J, Venskutonis RP (2007) Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. J Agric Food Chem 55:3027–3036

    Article  Google Scholar 

  • Barnekow R, Fexer W (2007) Pressed agglomerates suitable for consumption having retarded aroma release. WO2007/098809

    Google Scholar 

  • Begum SN (2005) Microencapsulation of lemon oil by precipitation method using sodium caseinate. Thesis, Food Science and Technology, School of Land and Food Sciences, The University of Queensland, St. Lucia

    Google Scholar 

  • Benczédi D (2002) Flavor encapsulation using polymer-based delivery systems. In: Taylor AJ (ed) Food aroma technology. Sheffield Academic Press, Sheffield, UK

    Google Scholar 

  • Bhandari BR, D’Arcy BR, Padukka I (1999) Encapsulation of lemon oil by paste method using β-cyclodextgrin: encapsulation efficiency and profile of oil volatiles. J Agric Food Chem 47(12):5194–5197

    Article  CAS  Google Scholar 

  • Bishop JRP, Nelson G, Lamb J (1998) Microencapsulation in yeast cells. J Microencapsul 15(6):761–773

    Article  CAS  Google Scholar 

  • Blake A, Cantergiani E, Harvey B (2003) Direct monitoring of flavor release from encapsulated flavor. In: Le Quéré JL, Étiévant PX (eds) Flavor research at the dawn of the twenty-first century. Proceedings of the 10th Weurman Flavor Research Symposium, London, Intercept Ltd, pp 154–158

    Google Scholar 

  • Bohn DM, Cadwallader KR, Schmidt SJ (2005) Use of DSC, DVS-DSC, and DVS-fast GC-FID to evaluate the physicochemical changes that occur in artificial cherry Durarome upon humidification. J Food Sci 70(2):E109–E116

    Article  CAS  Google Scholar 

  • Bonnet EFJV (2006) Granular cooking aid comprising microbial encapsulates, and cubes and tablets comprising such granular cooking aids. WO2006045404

    Google Scholar 

  • Bouquerand PE, Maio S, Normand V, Singleton S, Atkins D (2004) Swelling and erosion affecting aroma release from glassy particles in water. AIChE J 50(12):3257–3270

    Article  CAS  Google Scholar 

  • Bouwmeesters JFG, De Roos KB (1998) Process for preparation beads as food additive. WO1998015192

    Google Scholar 

  • Brückner M, Bade M, Kunz B (2007) Investigations into the stabilization of a volatile aroma compound using a combined emulsification and spray drying process. Eur Food Res Technol 226:137–146

    Article  Google Scholar 

  • Buffo RA, Probst K, Zehentbauer G, Luo Z, Reineccius GA (2002) Effects of agglomeration on the properties of spray-dried encapsulated aromas. Flavor Frag J 17:292–299

    Article  CAS  Google Scholar 

  • Burdock GA (1994) Fenaroli’s handbook of flavor ingredients, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Bush Boake Allen Ltd (1973) Encapsulated compositions. GB1327761

    Google Scholar 

  • Campanile F (2004) The flavor saviour? Food Processing 73(9):14

    Google Scholar 

  • Carolina BC, Carolina S, Zamora MC, Jorge C (2007) Glass transition temperatures and some physical and sensory changes in stored spray-dried encapsulated flavors. Food Sci Technol 40:1792–1797

    CAS  Google Scholar 

  • Chang CP, Dobashi T (2003) Preparation of alginate complex capsules containing eucalyptus essential oil and its controlled release. Colloids Surf B Biointerfaces 32:257–262

    Article  CAS  Google Scholar 

  • Charve J, Reineccius RA (2009) Encapsulation performance of proteins and traditional materials for spray dried flavors. J Agric Food Chem 57(6):2486–2492

    Article  CAS  Google Scholar 

  • Cho YH, Park J (2002) Characteristics of double-encapsulated flavor powder prepared by secondary fat coating process. J Foods Sci 67:968–972

    Article  CAS  Google Scholar 

  • Cho YH, Park J (2009) Encapsulation of flavors by molecular inclusion using β-cyclodextrin: comparison with spray-drying process using carbohydrate-based wall materials. Food Sci Biotechnol 18(1):185–189

    CAS  Google Scholar 

  • Coyne B, Faragher J, Gouin S, Hansen CB, Ingram R, Isak T, Thomas LV, Tse KL (2005) Microcapsules. WO2005018794

    Google Scholar 

  • Crothers M, Nelson G (2006) Targeted delivery. US2006/0127489

    Google Scholar 

  • Daragh RT, Stone JL (1975) Fats with encapsulated flavors. US3867556

    Google Scholar 

  • Dardelle G, Normand V, Steenhoudt M, Bouquerand PE, Chevalier M, Baumgartner P (2007) Flavor-encapsulation and flavor-release performances of a commercial yeast-based delivery system. Food Hydrocolloids 21:953–960

    Article  CAS  Google Scholar 

  • De Roos KB (2003) Effect of texture and microstructure on flavor retention and release. Int Dairy J 13:593–605

    Article  Google Scholar 

  • De Roos KB, Perren M, Sherman GA (2001) Encapsulation of active ingredients. EP1064856

    Google Scholar 

  • Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Drying Technol 23:1361–1394

    Article  CAS  Google Scholar 

  • Doorn L, Campanile F (2006) Encapsulation of food ingredients: principles and applications for flavor. Special Publications of the Royal Society of Chemistry 303:268–274

    CAS  Google Scholar 

  • Druaux C, Voilley A (1997) Effect of food composition and microstructure on volatile flavor release. Trends Food Sci Technol 8:364–368

    Article  CAS  Google Scholar 

  • Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  Google Scholar 

  • Fulger C, Popplewell M (1994) Flavor encapsulation. WO9406308, US5792505, or US5958502

    Google Scholar 

  • Gaonkar AG, Ludwig CJ (2005) Aroma-producing compositions for foods. US2005287286AA, EP1611798 and US7442399BB

    Google Scholar 

  • Goubet I, Le Quere J-L, Voilley AJ (1998) Retention of aroma compounds by carbohydrates: influence of their physicochemical characteristics and of their physical state. A review. J Agric Food Chem 46:1981–1990

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Heinrich E (2006) Aroma release properties from yeast cell encapsulates in watery applications. Poster at 14th international workshop on bioencapsulation, Lausanne, Switzerland

    Google Scholar 

  • Heinrich E (2007) Flavor encapsulation into yeast cells and cooking stability in aqueous food products. Podium presentation at the 34th Controlled Release Society meeting, Long Beach, CA

    Google Scholar 

  • Henson L, Popplewell LM, Qi-Zheng J, Toth A, Bryant CM, Hans K, Pringgosusanto F (2006) Preparation and use of hydrogels. EP1716846, US2006239956, and US2006240076

    Google Scholar 

  • Hong MM, Oh JM, Choy JH (2008) Encapsulation of flavor molecules, 4-hydroxy-3-methoxy benzoic acid, into layered inorganic nanoparticles for controlled release of flavor. J Nanosci Nanotechnol 8:5018–5021

    Article  CAS  Google Scholar 

  • Hsieh WC, Chang CP, Gao YL (2006) Controlled release properties of chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloids Surf B Biointerfaces 53:209–214

    Article  CAS  Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007a) Encapsulation of nanoparticles of d-limonene by spray-drying: role of emulsifiers and emulsifying techniques. Drying Technol 25:1079–1089

    Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007b) Role of powder particle size on the encapsulation efficiency of oils during spray drying. Drying Technol 25:1091–1099

    Article  Google Scholar 

  • Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Encapsulation efficiency of food flavor and oils during drying. Drying Technol 26:816–835

    Article  Google Scholar 

  • Kamaguchi Y, Mizutani K, Nishikawa M, Nagae K, Tanabe T (2001) Sugar-coated seamless capsule containing water-soluble material as content. JP2001238611

    Google Scholar 

  • Kanakdande D, Bhosale R, Singhal RS (2007) Stability of cumin oleoresin microencapsulated in different combinations of gum arabic, maltodextrin, and modified starch. Carbohydr Polym 67:536–541

    Article  CAS  Google Scholar 

  • Kant A, Linforth RST, Hort J, Taylor AJ (2004) Effect of β-cyclodextrin on aroma release and flavor perception. J Agric Food Chem 52:2028–2035

    Article  CAS  Google Scholar 

  • Krishnan S, Bhosale R, Singhal RS (2005) Microencapsulation of cardamom oleoresin: evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydr Polym 61:95–102

    Article  CAS  Google Scholar 

  • Lemetter CYG, Meeuse FM, Zuidam NJ (2009) Control of the morphology and size of complex coacervate microcapsules during scale up. AIChE J 55(6):1487–1496

    Article  CAS  Google Scholar 

  • Lian G, Malone M, Homan JE, Norton IT (2004) A mathematical model of volatile release in mouth from the dispersion of gelled emulsion particles. J Control Release 98:139–155

    Article  CAS  Google Scholar 

  • Liu XD, Furuta T, Yoshii H, Linko P (2000) Retention of emulsified flavor in a single droplet during drying. Food Sci Technol Res 6(4):335–339

    Article  Google Scholar 

  • Liu XD, Atarashi T, Furuta T, Yoshii H, Aishima S, Ohkawara M, Linko P (2001) Microencapsulation of emulsified hydrophobic flavors by spray drying. Drying Technol 19(7):1361–1374

    Article  CAS  Google Scholar 

  • López-Carballo G, Cava D, Lagarón JM, Catalá R, Gavara R (2005) Characterisation of the interaction between two food aroma components, α-pinene and ethyl butyrate, and ethylene-vinyl alcohol copolymer (EVOH) packaging films as a function of environmental humidity. J Agric Food Chem 53:7212–7216

    Article  Google Scholar 

  • Madene A, Jacquot M, Scher J, Desobry S (2006) Flavor encapsulation and controlled release – a review. Int J Food Sci Technol 41:1–21

    CAS  Google Scholar 

  • Malone ME, Appelqvist IAM (2003) Gelled emulsion particles for the controlled release of lipophilic volatiles during eating. J Control Release 90:227–241

    Article  CAS  Google Scholar 

  • Malone ME, Appelqvist IAM, Norton IT (2003) Oral behaviour of food hydrocolloids and emulsions. Part 2. Taste and aroma release. Food Hydrocolloids 17:775–784

    Article  CAS  Google Scholar 

  • Mangos T, Fischer N, Chauchadis P, Fexer W, Schütte C (2007) Mononuclearly filled microcapsules. EP1775017

    Google Scholar 

  • McIver RC, Vlad F, Golding RA Jr, Leichssenring TD, Benczédi D (2002) Encapsulated flavor and/or fragrance composition. WO2002065858

    Google Scholar 

  • Meyer A (1992) Perfume microencapsulation by complex coacervation. Chimia 46:101–102

    CAS  Google Scholar 

  • Morishita T, Sunohara H, Tanoue S (1984) Method and apparatus for production of microcapsules. US4481157

    Google Scholar 

  • Normand V, Dardelle G, Bouquerand PE, Nicolas L, Johnston DJ (2005) Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. J Agric Food Chem 53:7532–7543

    Article  CAS  Google Scholar 

  • Parris N, Cooke PH, Hicks KB (2005) Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem 53:4788–4792

    Article  CAS  Google Scholar 

  • Popplewell LM, Porzio MA (1998) Fat-coated encapsulation compositions and method for preparing the same. WO1998018338

    Google Scholar 

  • Popplewell LM, Henson L, Toth A (2003) Keeping a full flavor. Food Ingredients Anal Int August: 4–7

    Google Scholar 

  • Porzio M (2004) Flavor encapsulation: a convergence of science and art. Food Technol 58(7):40–47

    CAS  Google Scholar 

  • Porzio MA (2007a) Flavor delivery and product development. Food Technol 01(07):22–29

    Google Scholar 

  • Porzio M (2007b) Spray drying. An in-dept look at the steps in spray drying and the different options available to flavorists. Perfumer Flavorist 32(11):34–39

    CAS  Google Scholar 

  • Porzio M (2008) Melt extrusion and melt injection. Perfumer Flavorist 33(6):48–53

    CAS  Google Scholar 

  • Porzio MA, Madsen MG (1997) Double encapsulation process and flavorant compositions prepared thereby. WO1997013416

    Google Scholar 

  • Rasp C, Brod H, Hinderer J, Renz KH (2000) Encapsulating medium and method for encapsulating perfumes and flavor. EP1034705

    Google Scholar 

  • Ré MI (1998) Microencapsulation by spray drying. Drying Technol 16(6):1195–1236

    Article  Google Scholar 

  • Redd RV, Sell JL (1997) Method for the encapsulation of liquids. WO1997045195

    Google Scholar 

  • Reineccius GA (2004) Spray-drying of food flavors. Drying Technol 22(6):1289–1324

    Article  Google Scholar 

  • Reineccius TA, Reineccius GA, Peppard TL (2004) Utilisation of cyclodextrin for improved flavor retention in thermally processed foods. J Food Sci 69(1):58–62

    Article  Google Scholar 

  • Reineccius TA, Reineccius GA, Peppard TL (2005) The effect of solvent interactions on cyclodextrin/flavor molecules inclusion complexes. J Agric Food Chem 53:388–392

    Article  CAS  Google Scholar 

  • Schleifenbaum B, Uhelemann J, Boeck R, Hinderer J (2000) Encapsulated flavor and/or fragrance preparations. WO2000036931

    Google Scholar 

  • Schleifenbaum B, Voigt I, Aickele F (2006) Seamless filled capsules. EP1426045

    Google Scholar 

  • Shefer A, Shefer SD (2003) A controlled release system for pharmaceutical and nutraceutical use. Patents US20030152629 and WO2004/082660

    Google Scholar 

  • Shiga H, Yoshii H, Nishiyama T, Furuta T, Forssele P, Poutanen K, Linko P (2001) Flavor encapsulated and release characteristics of spray-dried powder by the blended encapsulatant of cyclodextrin and gum arabic. Drying Technol 19(7):1385–1395

    Article  CAS  Google Scholar 

  • Shiga H, Yoshii H, Taguchi R, Nishiyama T, Furuta T, Linko P (2003) Release characteristics of flavor from spray-dried powder in boiling water and during rice cooking. Biosci Biotechnol Biochem 67(2):426–428

    Article  CAS  Google Scholar 

  • Shiga H, Yoshii H, Ohe H, Yasuda M, Furuta T, Kuwahara H, Ohkawara M, Linko P (2004) Encapsulation of Shiitake (Lenthinus Edodes) flavors by spray drying. Biosci Biotechnol Biochem 68(1):66–71

    Article  CAS  Google Scholar 

  • Sijtsema S, Linnemann A, Van Gaasbeek T, Dagevos H, Jongen W (2002) Variables influencing food perception reviewed for consumer-oriented product development. Crit Rev Food Sci Nutr 42(6):565–581

    Article  Google Scholar 

  • Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P (2003) Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J Food Sci 68(7):2256–2262

    Article  CAS  Google Scholar 

  • Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Forssell P, Partanen R, Poutanen K, Linko P (2004) Effect of water activity on the release characteristics and oxidative stability of d-limonene encapsulated by spray drying. J Agric Food Chem 52:1269–1276

    Article  CAS  Google Scholar 

  • Soottitantawat A, Bigeard F, Yoshii H, Furuta T, Ohkawara M, Linko P (2005a) Influence of emulsion and powder size on the stability of encapsulated d-limonene by spray drying. Innovative Food Sci Emerg Technol 6:106–114

    Google Scholar 

  • Soottitantawat A, Takayama K, Okamura K, Muranaka D, Yoshii H, Furuta T, Ohkawara M, Linko P (2005b) Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Sci Emerg Technol 6:163–170

    Article  CAS  Google Scholar 

  • Soper JC (1995) Utilization of coacervated flavors. In: Risch SJ, Reineccius GA (eds) Encapsulation and controlled release of food ingredients. ACS Symposium Series 590. American Chemical Society, Washington, DC, chapter 10, pp 104–112

    Google Scholar 

  • Soper JC, Thomas MT (1998) Protein-encapsulated oil particles. EP856355

    Google Scholar 

  • Soper JC, Molnar J, Vale JM (2004) Alginate matrix particles. WO2004098318

    Google Scholar 

  • Subramaniam A, Reilly A (2004) Preparation of microcapsules. WO2004022221

    Google Scholar 

  • Subramaniam A, McIver RC, Van Sleeuwen RMT (2006) Process for the incorporation of a flavor or fragrance ingredient or composition into a carbohydrate matrix. WO2006038067

    Google Scholar 

  • Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15:137–142

    Article  CAS  Google Scholar 

  • Thies C (2007) Microencapsulation of flavors by complex coacervation. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Blackwell, Ames, pp 149–170

    Chapter  Google Scholar 

  • Trophardy G (2007a) Flavor and/or fragrance capsules. WO2007/054583

    Google Scholar 

  • Trophardy G (2007b) One step spray drying process. WO2007/135583

    Google Scholar 

  • Ubbink J, Schoonman A (2003) Flavor delivery systems. In: Kirk-Othmer encyclopedia of chemical technology, on-line and 5th edn, vol 11. Wiley-Interscience, New York

    Google Scholar 

  • Uhlemann J, Schleifenbaum B, Bertram HJ (2002) Flavor encapsulation technologies: an overview including recent developments. Perfumer Flavorist 27:52–61

    CAS  Google Scholar 

  • Vaidya S, Bhosale R, Singhal RS (2006) Microencapsulation of cinnamon oleoresin by spray drying using different wall materials. Drying Technol 24:983–992

    Article  CAS  Google Scholar 

  • Valentinotti S, Armanet L, Porret J (2006) Encapsulated polyunsaturated fatty acids. WO2006067647

    Google Scholar 

  • Van Ruth S, Roozen JP (2002) Delivery of flavor from food matrices. In: Taylor AJ (ed) Food flavor technology. Sheffield Academic Press, Sheffield, UK

    Google Scholar 

  • Veith SR, Hughes E, Pratsinis SE (2004a) Restricted diffusion and release of aroma molecules from sol-gel-made porous silica particles. J Control Release 99:315–327

    Article  CAS  Google Scholar 

  • Veith SR, Pratsinis SE, Perren M (2004b) Aroma retention in sol-gel made silica particles. J Agric Food Chem 52:5964–5971

    Article  CAS  Google Scholar 

  • Veith SR, Perren M, Pratsinis SE (2005) Encapsulation and retention of decanoic acid in sol-gel-made silicas. J Colloid Interf Sci 283:495–502

    Article  CAS  Google Scholar 

  • Voilley A, Etiévant P (2006) Flavor in food. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  • Weinbreck FCJ, De Kruiff CG, Schrooyen P (2003) Complex coacervates containing whey proteins. WO03106014 and EP1371410

    Google Scholar 

  • Wonschik J, Machinek A, Koschorreck C (2005) Coated spherical seamless filled capsules. WO2005077521

    Google Scholar 

  • Yilmaz G (2003) Thermoplastic starch matrices for encapsulation and controlled release of volatile compounds. PhD Thesis, Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  • Yilmaz G, Jongboom ROJ, van Soest JJG, Feil H (1999) Effect of glycerol on the morphology of starch-sunflower oil composites. Carbohydr Polym 38:33–39

    Article  CAS  Google Scholar 

  • Yilmaz G, Jongboom ROJ, Feil H, Hennink WE (2001) Encapsulation of sunflower oil in starch matrices via extrusion: effect of the interfacial properties and processing conditions on the formation of dispersed phase morphologies. Carbohydr Polym 45:403–410

    Article  CAS  Google Scholar 

  • Yilmaz G, Jongboom ROJ, Van Dijk C (2005) Thermoplastic starch as a biodegradable matrix for encapsulation and controlled release. In: Mallapragada SK, Narasimhan B (eds) Handbook of biodegradable polymeric materials and their applications. Iowa State University, Ames, USA

    Google Scholar 

  • Yoshii H, Yasuda M, Furuta T, Kuwahara H, Ohkawara M, Linko P (2005) Retention of cyclodextrin complexed shiitake (Lentinus edodes) flavors with spray drying. Drying Technol 23:1205–1215

    Article  CAS  Google Scholar 

  • Yoshii H, Neoh TL, Beak SH, Furuta T (2006) Release behavior of flavor encapsulated CD in slurry solution under boiling conditions. J Incl Phenom Macrocycl Chem 56(1–2):113–116

    Article  CAS  Google Scholar 

  • Yuliani S, Bhandari B, Rutgers R, D’Arcy B (2004) Application of microencapsulated flavor to extrusion product. Food Rev Int 20(2):163–185

    Article  CAS  Google Scholar 

  • Yuliani S, Torley PJ, D’Arcy B, Nicholson T, Bhandari B (2006a) Extrusion of mixtures of starch and d-limonene encapsulated with β-cyclodextrin: flavor retention and physical properties. Food Res Int 39:318–331

    Article  CAS  Google Scholar 

  • Yuliani S, Torley PJ, D’Arcy B, Nicholson T, Bhandari B (2006b) Effect of extrusion parameters on flavor retention, functional and physical properties of mixtures of starch and d-limonene encapsulated in milk proteins. Int J Food Sci Technol 41(S.2):83–94

    CAS  Google Scholar 

  • Zasypkin D, Porzio M (2004) Glass encapsulation of flavor with chemically modified starch blends. J Microencapsul 21(4):385–397

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaas Jan Zuidam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zuidam, N.J., Heinrich, E. (2010). Encapsulation of Aroma. In: Zuidam, N., Nedovic, V. (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1008-0_5

Download citation

Publish with us

Policies and ethics