Skip to main content

Definition of the Subject

Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards and, when possible, recovering energy, as well as eventual combustion residues. Essential features are as follows: achieving a deep reduction in waste volume; obtaining a compact and sterile residue, yet treating a voluminous flow of flue gas while deeply eliminating a wide array of pollutants.

Destruction by fire is almost as old as humanity. Incineration was systematically applied at some locations, both in England and the USA, from the second half of the nineteenth century [14]. Furnaces widely differed in conception, yet were still poked and de-ashed manually. A successful furnace design was the cell furnace, composed of a series of juxtaposed combustion cells with a fixed grate, or also with two superposed retractable grates [46]. In 1895, the first large continental incinerator was mounted in Hamburg [7] after...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Air equivalence ratio:

Also, air ratio or air factor, (λ or k), is ratio of actual air supply to the theoretical (stoichiometric) requirements for complete combustion.

Combustion residues:

Ash remaining after combustion and consisting of bottom-ash or clinker, and of fly ash, entrained by flue gas and eventually separated. Chemical neutralization of flue gas also yields salts, by reaction of acid gas components with basic additives.

Emissions:

Output of pollutants through the stack (= guided emissions), to a minor extent also as diffuse emission, e.g., from waste pit, evaporation of spills, spreading of fly ash, and outgoing leaks.

Gasification:

Partial combustion generating flammable gas and conducted with deficiency of air in various reactor types.

Higher heating value (HHV):

Amount of heat produced by complete combustion of a specific unit amount of fuel in oxygen.

Immission:

Added atmospheric concentrations attributed to specific sources, e.g., an incinerator plant, and markedly varying with atmospheric conditions. Immissions are modeled on a basis of (a) emissions, (b) their dispersion, and (c) according to variable atmospheric conditions (wind direction and speed, atmospheric stability).

Municipal solid waste (MSW):

Waste produced in a city and collected by the municipality.

Pyrolysis:

Thermochemical decomposition of organic material in the absence of oxygen, yielding gaseous (pyrolysis gas), condensable (tar), and solid products (char).

Refuse-derived fuel (RDF):

Fuel from waste, produced by mechanical processing, (possibly biological), drying, and possibly densification.

Waste-to-energy (WtE):

Incineration process in which solid waste is converted into thermal energy to generate steam that drives turbines for electricity generators (http://www.businessdictionary.com/definition/waste-to-energy.html).

Bibliography

Primary Literature

  1. Lewis H (2007) Centenary history of waste and waste managers in London and South East England, Chartered Institution of Wastes Management, London. http://www.iwm.co.uk/web/FILES/LondonandSouthernCentre/London_and_Southern_Centenary_Histroy.pdf. Accessed July 2011

  2. Kleis H, Dalager S (2007) 100 years of waste incineration in Denmark – from refuse destruction plants to high-technology energy works. DTU, Copenhagen. http://www.ramboll.com/services/energy%20and%20climate//media/Files/RGR/Documents/waste%20to%20energy/100YearsLowRes.ashx. Accessed July 2011

  3. Reimann DO (1991) Abfallentsorgung mit integrierter Abfallverbrennung – Verfahren von gestern und heute. In: Reimann DO (ed) Rostfeuerungen zur Abfallverbrennung. EF-Verlag für Energie und Umwelt, Berlin, pp 1–20

    Google Scholar 

  4. Reimann DO (1991) Die Entwicklung der Rostfeuerungstechnik für die Abfallverbrennung – Vom Zellenofen zur vollautomatischen, emissions- und leistungsgeregelten Rostfeuerung. In: Reimann DO (ed) Rostfeuerungen zur Abfallverbrennung. EF-Verlag für Energie und Umwelt, Berlin, pp 21–60

    Google Scholar 

  5. Reimann DO (1991) Rostfeuerungen zur Abfallverbrennung. EF-Verlag für Energie und Umwelt, Berlin

    Google Scholar 

  6. Tanner R (1965) Die Entwicklung der Von Roll-Müllverbrennungsanlagen. Schweizer Bauzeitung 83(16)

    Google Scholar 

  7. Picture of the first Hamburg incinerator (1985) http://fr.wikipedia.org/wiki/Fichier:Erste_M%C3%BCllverbrennungsanlage_Hamburg.jpeg. Accessed 29 Dec 2011

  8. Schoeters J (1975) Patent study on mechanical grate development. VUB, Brussels

    Google Scholar 

  9. Buekens A, Schoeters J (1984) Final Report Thermal methods in waste disposal – pyrolysis, gasification – incineration – RDF-firing, Contract Number ECI 1011/B 7210/83B

    Google Scholar 

  10. Ebara Co. (1993) Fluidised-bed combustion of municipal solid waste in Japan. Company document

    Google Scholar 

  11. Buekens A (1978) Resource recovery and waste treatment in Japan. Resour Recov Conserv 3(3):275–306

    Article  Google Scholar 

  12. Buekens A (2008) Schmelzverfahren – erfahrungen in Japan. In: Bilitewski B, Urban AI, Faulstich M (eds) Schriftenreihe des Fachgebietes. Abfalltechnik Universität, Kassel

    Google Scholar 

  13. Global Environment Centre Foundation, Japanese Advanced Environment Equipment, http://www.gec.jp/JSIM_DATA/company_index.html

  14. E.U. (2009) E.U. Guideline for safe and eco-friendly biomass gasification (gasification – guide). http://www.gasification-guide.eu/. Accessed 11 July 2011

  15. Buekens A, Bridgwater AV, Ferrero GL, Maniatis K (eds) (1990) Commercial and marketing aspects of gasifiers. Commission of the European Communities, Elsevier Applied Sciences, Luxembourg, pp 1–239

    Google Scholar 

  16. Malkow T (2004) Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag 24(1):53–79

    Article  CAS  Google Scholar 

  17. Buekens A, Masson H (1980) Wood waste gasification as a source of energy. Conserv Recycl 3(3–4):275–284

    Google Scholar 

  18. Siemons RV (2002) A development perspective for biomass-fuelled electricity generating technologies. PhD thesis, University of Amsterdam. http://www.cleanfuels.nl/Projects%20&%20publications/Siemons_PhD%20Thesis_Internet.pdf. Accessed 11 July 2011

  19. Scheirs J, Kaminsky W (2006) Feedstock recycling and pyrolysis of waste plastics. Wiley, Chichester

    Book  Google Scholar 

  20. Inguanzoa M, Dominguez A, Menéndez JA, Blancoa CG, Pisa JJ (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Analy Appl Pyrol 63(1):209–222

    Article  Google Scholar 

  21. Buekens A, Schoeters J (1980) Basic principles of waste pyrolysis and review of European processes. ACS Symposium Series 130:397–421

    Article  CAS  Google Scholar 

  22. Buekens A (1978) Schlussfolgerungen hinsichtlich der praktischen Anwendung der Hausmüllpyrolyse aufgrund weltweiter Erfahrungen. Müll und Abfall 12(6):184–191

    Google Scholar 

  23. 12th international congress on combustion by-products and their health effects: combustion engineering and global health in the 21st century – issues and Challenges, Zhejiang University in Hangzhou, China, 5–8 June 2011

    Google Scholar 

  24. Chandler AJ, Eighmy TT, Hartlén J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam\Lausanne\New York\Oxford\Shannon\Tokyo

    Google Scholar 

  25. Izquierdo M, López-Soler A, Ramonich EV, Barra M, Querol X 2002) Characterisation of bottom ash from municipal solid waste incineration in Catalonia. J Chem Technol Biotechnol 77(5):576–583

    Article  CAS  Google Scholar 

  26. Vehlow J (2002) Bottom ash and APC residue management. Expert meeting on power production from waste and biomass – IV, Hanasaari Cultural Center, Espoo, 8–10 Apr 2002. VTT Information Service, Espoo, pp 151–176

    Google Scholar 

  27. Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258

    Article  CAS  Google Scholar 

  28. Bergfeldt B, Jay K, Seifert H, Vehlow J, Christensen TH, Baun DL, Mogensen EPB (2004) Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 1: fate of elements and dioxins. Waste Manag Res 22:49–57

    Article  CAS  Google Scholar 

  29. Baun DL, Christensen TH, Bergfeldt B, Vehlow J, Mogensen EPB (2004) Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: leaching characteristics of bottom ashes. Waste Manag Res 22:58–68

    Article  CAS  Google Scholar 

  30. Achternbosch M, Richers U (2002) Materials flows and investment costs of flue gas cleaning systems of municipal solid waste incinerators. Forschungszentrum Karlsruhe Wissenschaftliche Berichte (FZKA), Karlsruhe, 6726

    Google Scholar 

  31. CBR (2011) Personal communication

    Google Scholar 

  32. ARGUS – ARBEITSGRUPPE UMWELTSTATISTIK (1981) Bundesweite Hausmüllanalyse 1979/80. Umweltbundesamt, Berlin. Forschungsbericht 103 03 503.

    Google Scholar 

  33. ARGUS –ARBEITSGRUPPE UMWELTSTATISTIK (1986) Bundesweite Hausmüllanalyse 1983-1985;Laufende Aktualisierung des Datenmaterials. Umweltbundesamt, Berlin. Forschungsbericht 103 03 508

    Google Scholar 

  34. Görner K (1991) Technische verbrennungssysteme, grundlagen, modellbildung, simulation. Springer, Berlin\Heidelberg\New York, p 27

    Book  Google Scholar 

  35. Niessen WR (2010) Combustion and incineration processes: applications in environmental engineering. Taylor and Francis, Baco Raton

    Book  Google Scholar 

  36. Brunner CR (1996) Incineration systems handbook. Incinerator Consultants, Reston

    Google Scholar 

  37. Hämmerli H (1991) Grundlagen zur Berechnung von Rostfeuerungen. In: Reimann D (ed) Rostfeuerungen zur Abfallverbrennung. EF-Verlag, Hrsg

    Google Scholar 

  38. European Commission (2006) Integrated pollution prevention and control – reference document on the best available techniques for waste incineration

    Google Scholar 

  39. http://en.wikipedia.org/wiki/File:Et_baal.jpg

  40. Wilkes JW, Summers CE, Daniels CA, Berard MT (2005) PVC handbook. Hanser Verlag, MŘnchen

    Google Scholar 

  41. Buekens A (2006) Introduction to feedstock recycling of plastics. In: Scheirs J, Kaminsky W (eds) Feedstock recycling and pyrolysis of waste plastics: Converting waste plastics into diesel and other fuels. John Wiley & Sons

    Google Scholar 

  42. Buekens A (2008) Solving emission problems in a fluid bed MSWI. In: 5th i-CIPEC: international conference on combustion, incineration/pyrolysis and emission control – eco-conversion of biomass and waste, Chiang Mai

    Google Scholar 

  43. Briner E, Roth P (1948) Recherches sur l’hydrolyse par la vapeur d’eau de chlorures alcalins seuls ou additionnés de divers adjuvants, Helv Chim Acta 31(2):1352–1360

    Article  CAS  Google Scholar 

  44. Buekens A, Schoeters J (1986) PVC and waste incineration. APME, Brussels

    Google Scholar 

  45. Chimenos JM, Segarra M, Fernández MA, Espiell F (1999) Characterization of the bottom ash in municipal solid waste incinerator. J Hazard Mater 64(3):211–222

    Article  CAS  Google Scholar 

  46. Meima JA, Comans RNJ (1997) Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash. Environ Sci Technol 31(5):1269–1276

    Article  CAS  Google Scholar 

  47. Commission Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (notified under document number C(2000) 1147)

    Google Scholar 

  48. Wikipedia, Hazardous Waste

    Google Scholar 

  49. Buekens A (2011) Hazardous waste and pollution prevention, course organized by VMAC, Premier Provider of Business Intelligence, Abu Dhabi (U.A.E.)

    Google Scholar 

  50. Suisse de Réassurance (1995) Les usines de traitement des déchets urbains, Zurich

    Google Scholar 

  51. EPA’s Chemical Compatibility Chart (1980) http://www.uos.harvard.edu/ehs/environmental/EPAChemicalCompatibilityChart.pdf. Accessed 11 July 2011

  52. Mallinckrodt Specialty Chemicals Co–Chemical compatibility list, 5/1989 http://www.uos.harvard.edu/ehs/environmental/MallinckrodtChemicalCompatibilityList.pdf. Accessed 29 Dec 2011

  53. Cole-Palmer Instrument Company-Chemical compatibility (2011) http://www.coleparmer.com/techinfo/ChemComp.asp. Accessed 29 Dec 2011

  54. University of Georgia-Chemical storage plans for laboratories (2003) http://www.esd.uga.edu/chem/chemstorage.htm, http://www.esd.uga.edu/chem/pub/Ismanual.pdf, http://www.esd.uga.edu/chem/pub/hmrelocating.pdf. Accessed 29 Dec 2011

  55. The University of Vermont, http://www.uvm.edu/~esf/chemicalsafety/chemicalstorage.html. Accessed 29 Dec 2011

  56. Magazine Lab Manager, Chemical storage plan fundamentals. http://www.labmanager.com/?articles.view/articleNo/1161/article/8-Chemical-Storage-Plan-Fundamentals. Accessed 29 Dec 2011

  57. COMAH (Control of Major Accident Hazards), http://www.hse.gov.uk/comah/

  58. Ferziger JH, Peric M (2001) Computational methods for fluid dynamics, 2nd edn. Springer, Berlin, http://elib.tu-darmstadt.de/tocs/100561322.pdf

  59. Reményi K (1987) Industrial firing. Akadémiai Kiado, Budapest, 496 p

    Google Scholar 

  60. Ferziger JH, Peric M (2001) Computational methods for fluid dynamics, 2nd edn. Springer, New York, http://elib.tu-darmstadt.de/tocs/100561322.pdf

  61. Yang YB, Nasserzadeh V, Swithenbank J (2002) Mathematical modelling of MSW incineration in a travelling bed. J Waste Manag 22(4):369–380

    Article  CAS  Google Scholar 

  62. Yang YB, Goodfellow J, Nasserzadeh V, Swithenbank J (2002) Parameter study on the incineration of MSW in packed beds. J Inst Energy 75(504):66–80

    CAS  Google Scholar 

  63. Lim CN, Nasserzadeh V, Swithenbank J (2001) The modelling of solid mixing in waste incinerator plants. J Powder Technol 114(1):89–95

    Article  CAS  Google Scholar 

  64. SUWIC papers (2011) http://www.suwic.group.shef.ac.uk/Journal%20Papers.html. Accessed 29 Dec 2011

  65. Buekens A, Mertens J, Schoeters J, Steen P (1979) Experimental techniques and mathematical models in the study of waste pyrolysis and gasification. Conserv Recycl 3(1):1–23

    Article  CAS  Google Scholar 

  66. Moilanen A (2006) Thermogravimetric characterisations of biomass and waste for gasification processes, VTT Publications 607. 103 pp. + app. 97 pp. Espoo, Finland

    Google Scholar 

  67. Nasserzadeh V, Swithenbank J, Lawrence D, Garrod N, Jones B (1995) Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique. J Inst Energy 68(476):106–120

    CAS  Google Scholar 

  68. Gorman P, Bergman F, Oberacker D (1984) Field experience in sampling hazardous waste incinerators. US Environmental Protection Agency, Washington, DC, EPA/600/D-84/134 (NTIS PB84201573)

    Google Scholar 

  69. Carroll GJ (1994) Pilot scale research on the fate of trace metals in incineration. In: Hester RE (ed) Waste incineration and the environment. Royal Society of Chemistry (Great Britain), Cambridge, pp 95–121

    Chapter  Google Scholar 

  70. http://cfr.vlex.com/vid/270-62-hazardous-waste-incinerator-permits-19820277, (2010). Accessed 29 Dec 2011

  71. Dellinger B, Torres JL, Rubey WA, Hall DL, Graham JL (1984) Determination of the thermal decomposition properties of 20 selected hazardous organic compounds. Prepared for the U.S. EPA Industrial Environmental Research Laboratory. Prepared by the University of Dayton Research Institute. EPA-600/2-84-138. NTIS PB-84-232487

    Google Scholar 

  72. von Paczkowski K (1979) Der Kessel als Bestandteil einer Müllverbrennungsanlage. Seine Entwicklung, sein Entwurf, WÄRME 85:121–125

    Google Scholar 

  73. von Paczkowski K (1984) Tendenzen bei Kesseln in Müllverbrennungsanlagen. In: Thome-Kozmiensky KI (ed) Recycling international. EF-Verlag, Berlin

    Google Scholar 

  74. Jachimowski A (1978) Kessel für Abfallverbrennungsanlagen. Chemie-Technik 7:403–5

    Google Scholar 

  75. Rasch R (1976) Korrosionsvorgänge im Feuerraum. In Kumpf, Maas, Straub, Müll und Abfallbeseitigung, E. Schmidt Verlag, 39 Lfg/III, 7300

    Google Scholar 

  76. Vaughan DA, Krause HH, Boyd WK (1974) Study of corrosion in municipal incinerators versus refuse composition. EPA-R-800055

    Google Scholar 

  77. Schroer C, Konys J (2002) Rauchgasseitige hochtemperatur-korrosion in müllverbrennungsanlagen – ergebnisse und bewertung einer literaturrecherche. Forschungszentrum Karlsruhe (FZKA), Karlsruhe, 6695

    Google Scholar 

  78. Brossard JM, Lebel F, Rapin C, Mareche JF, Chaucherie X, Nicol F, Vilasi M (2009) Lab-scale study on fireside superheaters corrosion in MSWI Plants. In: Proceedings of the 17th annual north american waste-to-energy conference, NAWTEC17, 18–20 May 2009, Chantilly

    Google Scholar 

  79. Deuerling C, Maguhn J, Nordsieck H, Benker B, Zimmermann R, Warnecke R (2009) Investigation of the mechanisms of heat exchanger corrosion in a municipal waste incineration plant by analysis of the raw gas and variation of operating parameters. Heat Trans Engin 30(10–11):822–831

    Article  CAS  Google Scholar 

  80. Olie K, Vermeulen PL, Hutzinger O (1977) Chlorodibenzop-dioxins and chlorodibenzofurans are trace components of fly ash of some municipal incinerators in the Netherlands. Chemosphere 6:455–459

    Article  CAS  Google Scholar 

  81. Rappe C, Andersson R, Bergqvist PA, Brohede C, Hansson M, Kjeller LO, Lindström G, Marklund S, Nygren M, Swanson SE, Tysklind M, Wiberg K (1987) Overview on environmental fate of chlorinated dioxins and dibenzofurans-sources, levels and isomeric pattern in various matrices. Chemosphere 16:1603

    Article  CAS  Google Scholar 

  82. Rappe C, Andersson R, Bergqvist PA, Brohede C, Hansson M, Kjeller LO, Lindström G, Marklund S, Nygren M, Swanson SE, Tysklind M, Wiberg K (1987) Sources and relative importance of PCDD and PCDF emissions. Waste Manag Res 5(3):225–237

    Article  CAS  Google Scholar 

  83. Huang H, Buekens A (1995) On the mechanisms of dioxin formation in combustion processes. Chemosphere 31:4099–4117

    Article  CAS  Google Scholar 

  84. Weber R, Iino F, Imagawa T, Takeuchi M, Sakurai T, Sadakata M (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 44:1429–38

    Article  CAS  Google Scholar 

  85. Weber R, Sakurai T, Ueno S, Nishino J (2002) Correlation of PCDD/PCDF and CO values in a MSW incinerator–indication of memory effects in the high temperature/cooling section. Chemosphere 49:127–34

    Article  CAS  Google Scholar 

  86. Sakai SI, Hayakawa K, Takatsuki H, Kawakami I (2001) Dioxin-like PCBs released from waste incineration and their deposition flux. Environ Sci Technol 35:3601–7

    Article  CAS  Google Scholar 

  87. McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Engin J 86:343–368

    Article  CAS  Google Scholar 

  88. Everaert K, Baeyens J (2002) The formation and emission of dioxins in large scale thermal processes. Chemosphere 46:439–448

    Article  CAS  Google Scholar 

  89. Stanmore BR (2004) The formation of dioxins in combustion systems. Combust Flame 136:398–427

    Article  CAS  Google Scholar 

  90. Bumb RR, Crummett WB, Cutie SS, Gledhill JR, Hummel RH, Kagel RO, Lamparski LL, Luoma EV, Miller DL, Nestrick TJ, Shadoff LA, Stehl RH, Woods JS (1980) Trace chemistries of fire: a source of chlorinated dioxins. Science 210(4468):385–90

    Article  CAS  Google Scholar 

  91. Karasek FW, Dickson LC (1987) Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Science 237(4816):754–756

    Article  CAS  Google Scholar 

  92. Gullett BK, Bruce KR, Beach LO (1990) Formation of chlorinated organics during solid waste combustion. Waste Manag Res 8:203

    CAS  Google Scholar 

  93. Sidhu S, Edwards P (2002) Role of phenoxy radicals in PCDD/F formation. Int J Chem Kinet 34:531

    Article  CAS  Google Scholar 

  94. Vogg H, Metzger M, Stieglitz L (1987) Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration. Waste Manag Res 5(3):285–294

    Article  CAS  Google Scholar 

  95. Hagenmaier H, Kraft M, Brunner H, Haag R (1987) Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ Sci Technol 21(11):1080–1084

    Article  CAS  Google Scholar 

  96. Stieglitz L, Zwick G, Beck J, Roth W, Vogg H (1989) On the de-novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere 18:1219–1226

    Article  Google Scholar 

  97. Schwarz G, Stieglitz L (1992) Formation of organohalogen compounds in fly ash by metal-catalyzed oxidation of residual carbon. Chemosphere 25(3):277–282

    Article  CAS  Google Scholar 

  98. Stieglitz L, Jay K, Hell K, Wilhelm J, Polzer J, Buekens A (2003) Investigation of the formation of polychlorodibenzodioxins /- Furans and of other organochlorine compounds in thermal industrial processes, Forschungszentrum Karlsruhe, Wissenschaftliche Berichte – FZKA 6867

    Google Scholar 

  99. Gullett B, Bruce K, Beach L (1990) The effect of metal catalysts on the formation of polychlorinated diobenzo-p-dioxin and polychlorinated diobenzofuran precursors. Chemosphere 20:1945–1952

    Article  CAS  Google Scholar 

  100. Olie K, Addink R, Schoonenboom M (1998) Metals as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes. J Air Waste Manag Assoc 48:101–105

    Article  CAS  Google Scholar 

  101. Kuzuhara S, Sato H, Kasai E, Nakamura T (2003) Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environ Sci Technol 37(11):2431–5

    Article  CAS  Google Scholar 

  102. Hinton WS, Lane AM (1991) Characteristics of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere 22:473–483

    Article  CAS  Google Scholar 

  103. Tuppurainen K, Halonen I, Ruokojärvi P, Tarhanen J, Ruuskanen J (1998) Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review. Chemosphere 36(7):1493–1511

    Article  CAS  Google Scholar 

  104. Addink R, Paulus RHWL, Olie K (1996) Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash. Environ Sci Technol 30(7):2350–2354

    Article  CAS  Google Scholar 

  105. Pandelova M, Lenoir D, Schramm K-W (2007) Inhibition of PCDD/F and PCB formation in co-combustion. J Hazard Mater 149(3):615–8

    Article  CAS  Google Scholar 

  106. Vehlow J, Braun H, Horch K, Merz A, Schneider J, Stieglitz L, Vogg H (1990) Semi-technical demonstration of the 3R process. Waste Manag Res 8(6):461–472

    Article  CAS  Google Scholar 

  107. Weber R, Nagai K, Nishino J, Shiraishi H, Ishida M, Takasuga T, Kondo K, Hiraoka M (2002) Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere 46:1247–1253

    Article  CAS  Google Scholar 

  108. Stach J, Pekarek V, Grabic R, Lojkasek M, Pacakova V (2000) Dechlorination of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans on fly ash. Chemosphere 41:1881–1887

    Article  CAS  Google Scholar 

  109. Alderman SL (2005) Infrared and X-ray spectroscopic studies of the copper (II) oxide mediated reactions of chlorinated aromatic precursors to PCDD/F, Ph.D. Dissertation Louisiana State University, Chapter 1. http://etd.lsu.edu/docs/available/etd-01112005-150557/unrestricted/Alderman_dis.pdf. Accessed 11 July 2011

  110. Buekens A, Huang H (1998) Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. J Hazard Mater 62:1–33

    Article  CAS  Google Scholar 

  111. Wielgosiński G (2010) The possibilities of reduction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans emission. Int J Chem Eng. Review article 392175:11

    Google Scholar 

  112. Düwel U, Nottrodt A, Ballschmiter K (1990) Simultaneous sampling of PCDD/PCDF inside the combustion chamber and on four boiler levels of a waste incineration plant. Chemosphere 20(1):839–846, More papers are to be found at: http://www.nottrodt-ing.de/de/publi.htm

  113. Wikström E, Ryan S, Touati A, Tabor D, Gullett BK (2004) Origin of carbon in polychlorinated dioxins and furans formed during sooting combustion. Environ Sci Technol 38(13):3778–84

    Article  CAS  Google Scholar 

  114. Wikström E, Ryan S, Touati A, Gullett BK (2004) In situ formed soot deposit as a carbon source for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 38(7):2097–101

    Article  CAS  Google Scholar 

  115. Wikström E, Ryan S, Touati A, Tabor D, Gullett BK (2003) Key parameters for de novo formation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 37(9):1962–70

    Article  CAS  Google Scholar 

  116. Addink R, Olie K (1995) Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environ Sci Technol 29:1425–1435

    Article  CAS  Google Scholar 

  117. Konduri R, Altwicker ER (1994) Analysis of time scales pertinent to dioxin/furan formation on fly ash surfaces in municipal solid waste incinerators. Chemosphere 28(1):23–45

    Article  CAS  Google Scholar 

  118. Zimmermann R, Blumenstock M, Heger HJ, Schramm K-W, Kettrup A (2001) Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects. Environ Sci Technol 35:1019–1030

    Article  CAS  Google Scholar 

  119. Kreisz S, Hunsinger H, Vogg H (1997) Technical plastics as PCDD/F absorbers. Chemosphere 34(5–7):1045–1052

    Article  CAS  Google Scholar 

  120. Pekarek V, Weber R, Grabic R, Solcova O, Fiserova E, Syc M, Karban J (2007) Matrix effect on the de novo synthesis of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls and benzenes. Chemosphere (Eng) 68(1):51–61

    Article  CAS  Google Scholar 

  121. Altwicker ER (1994) Formation of PCDD/F in municipal solid waste incinerators: laboratory and modeling studies. J Hazard Mater 47(1–3):137–161

    Google Scholar 

  122. Buekens A, Tsytsik P, Carleer R (2007) Methods for studying the de novo formation of dioxins at a laboratory scale. In: International conference on power engineering-2007, Hangzhou, 23–27 Oct 2007

    Google Scholar 

  123. Buekens A, Swithenbank J (2007) CFD modelling of industrial plant from a viewpoint of dioxins formation. In: International conference on power engineering (ICOPE-2007), Hangzhou

    Google Scholar 

  124. Verhulst V, Buekens AG, Spencer P, Eriksson G (1996) The thermodynamic behaviour of metal chlorides and sulfates under the conditions of incineration furnaces. Environ Sci Technol 30:50–56

    Article  CAS  Google Scholar 

  125. http://www.termwiki.com/EN:chute-fed_incinerator_(Class_IIA). Accessed 29 Dec 2011

  126. http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/1964-National-Incinerator-Conference/1964-National-Incinerator-Conference-25.pdf. Accessed 29 Dec 2011

  127. http://www.dioxinfacts.org/sources_trends/trash_burning.html. Accessed 29 Dec 2011

  128. http://www.epa.gov/oaqps001/community/details/barrelburn.html. Accessed 29 Dec 2011

  129. Gullett BK, Lemieux PM, Lutes CC, Winterrowd CK, Winters DL (1999) PCDD/F emissions from uncontrolled, domestic waste burning. Presented at Dioxin ‘99, the 19th international symposium on halogenated environmental organic pollutants and POPs, Organohalogen compounds, vol 41, Venice, 12–17 Sept 1999, pp 27–30

    Google Scholar 

  130. Lemieux PM, Lutes CC, Abbott JA, Aldous KM (2000) Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in Barrels. Environ Sci Technol 34:377–884

    Article  CAS  Google Scholar 

  131. iran

    Google Scholar 

  132. http://www.sittommi.fr/fonctionnement-usine-incineration-ordures-menageres-pontivy.html. Accessed 29 Dec 2011

  133. Buekens A, Yan M, Jiang XG, Li XD, Lu SY, Chi Y, Yan JH, Cen K (2010) Operation of a municipal solid waste incinerator – Pontivy. i-CIPEC

    Google Scholar 

  134. Winnacker

    Google Scholar 

  135. Saxena SC, Jotshi CK (1994) Fluidized-bed incineration of waste materials. Prog Energy Combust Sci 20(4):281–324

    Article  CAS  Google Scholar 

  136. Integrated pollution prevention and control reference document on best available techniques for the waste treatments industries, August 2006

    Google Scholar 

  137. Santoleri JJ (1972) Chlorinated hydrocarbon waste recovery and pollution Abatement. In: Proceedings of the 1972-National-incinerator-conference, New York

    Google Scholar 

  138. Mizuno K (2002) Destruction Technologies for ozone depleting substances in Japan. National Institute for Resources and Environment, in UNEP: http://www.unep.fr/ozonaction/information/mmcfiles/3521-e-file2.pdf. UNON Nairobi

  139. http://www.uneptie.org/ozonaction/information/mmcfiles/3521-e-file2.pdf. Accessed 29 Dec 2011

  140. http://submergedcombustion.org.uk/Default.aspx. Accessed 29 Dec 2011

  141. Tsukishima Kankyo Engineering (2010) http://www.tske.co.jp/english/index.html. Accessed Dec 2011

  142. Buekens AG, Schoeters JG, Jackson DV, Whalley LW (1986) Status of RDF-production and utilization in Europe. Conserv Recycl 9:309–309

    Google Scholar 

  143. Friends of the Earth (2008) Briefing – mechanical and biological treatment (MBT)

    Google Scholar 

  144. Wikipedia, Mechanical and biological treatment (MBT)

    Google Scholar 

  145. IPPC (1999) Integrated pollution prevention and control (IPPC): reference document on best available techniques in the cement and lime manufacturing industrie. Formation and release of POPs in the cement industry, 2nd edn. European Commission, Directorate General JRC, Institute for Prospective Technological Studies, Seville

    Google Scholar 

  146. Ökopol (1999) Economic evaluation of dust abatement techniques in the European cement industry, Report for EC DG11, contract B4-3040/98/000725/MAR/E1; and “Economic evaluation of NOx abatement techniques in the European cement industry”, Report for EC DG11, contract B4-3040/98/000232/MAR/E1. Ökopol GmbH, Hamburg

    Google Scholar 

  147. Rabl A (2000) Criteria for limits on the emission of dust from cement kilns that burn waste as fuel. ARMINES/Ecole des Mines de Paris, Paris

    Google Scholar 

  148. SINTEF (2006) Formation and release of POPs in the cement industry, second edition. Report of the World Business Council for Sustainable Industry, Cement sustainability initiative, Geneva

    Google Scholar 

  149. Greenpeace International (1991) http://archive.greenpeace.org/toxics/reports/gopher-reports/inciner.txt. Amsterdam. Accessed 29 Dec 2011

  150. Greenpeace International (1994) http://archive.greenpeace.org/toxics/reports/azd/azd.html. Greenpeace Communications, London

  151. Costner P (2001) Chlorine, Combustion and Dioxins: Does Reducing Chlorine in Wastes Decrease Dioxin Formation in Waste Incinerators? http://archive.greenpeace.org/toxics/reports/chlorineindioxinout.pdf

  152. PVC WASTE AND RECYCLING. Solving a Problem or Selling a Poison? (1999) http://archive.greenpeace.org/toxics/html/content/pvc3.html#top. Accessed 29 Dec 2011

  153. Buekens A, Cen KF (2011) Waste incineration, PVC, and dioxins. J Mater Cycles Waste Manag 13:190–197

    Article  CAS  Google Scholar 

  154. Xu MX

    Google Scholar 

  155. Travis CC (1991) Municipal waste incineration risk assessment: deposition, food chain impacts, uncertainty, and research needs. Plenum Press, New York

    Book  Google Scholar 

  156. Hattemer-Frey HA, Travis CC (1991) Health effects of municipal waste incineration. CRC Press, Baco Raton

    Google Scholar 

  157. Roberts SM, Teaf CM, Bean JA (1999) Hazardous waste incineration: evaluating the human health and environmental risks. Lewis, Boca Raton

    Google Scholar 

Books and Reviews

  • Air Pollution Control Association, American Society of Mechanical Engineers. Research Committee on Industrial and Municipal Wastes (1988) Hazardous waste incineration: a re-source document sponsored by the ASME Research Committee on Industrial and Municipal Wastes; co-sponsored by the Air Pollution Control Association, the American Institute of Chemical Engineers, the United States Environmental Protection Agency

    Google Scholar 

  • Alter H, Horowitz E (1975) STP 592, Resource recovery and utilization. In: Proceedings of the national materials conservation symposium. http://www.astm.org/BOOKSTORE/PUBS/STP592.htm. Accessed July 2011

  • Bilitewski B, Härdtle G, Marek K (2000) Abfallwirtschaft. Handbuch für Praxis und Lehre. Springer, Berlin

    Google Scholar 

  • Bonner T, Dillon AP (1981) Hazardous waste incineration engineering, pollution technolo-gy review 88. Noyes Data Corporation, Park Ridge

    Google Scholar 

  • Gershman, Brickner & Bratton, Inc. (1986) Small-scale municipal solid waste energy recovery systems. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  • de Souza-Santos ML (2004) Solid Fuels combustion and gasification: modeling, simulation, and equipment operations. Marcel Dekker, New York

    Book  Google Scholar 

  • Freeman HM (1988) Incinerating hazardous wastes. Technomic, Lancaster

    Google Scholar 

  • Görner K (1991) Technische Verbrennungssysteme. Springer, Berlin\Heidelberg\New York

    Book  Google Scholar 

  • Grover VI (2002) Recovering energy from waste: various aspects. Science, Enfield

    Google Scholar 

  • Günther R (1974) Verbrennung und Feuerungen. Springer, Berlin\Heidelberg\New York

    Book  Google Scholar 

  • Hester RE (1994) Waste incineration and the environment. Royal Society of Chemistry (Great Britain), Cambridge

    Google Scholar 

  • Institute of Electrical and Electronics Engineers (1975) Incineration and treatment of hazardous waste. In: Proceedings of the eighth annual research symposium CRE: conversion of refuse to energy, vol 1. World Environment and Resources Council, Institute of Electrical and Electronics Engineers

    Google Scholar 

  • International conference on combustion, incineration/pyrolysis (i-CIPEC). In: Proceedings of the 1st (Seoul, Korea in 2000), 2nd (Jeju, Korea in 2002), 3rd (Hangzhou, China in 2004), 4th (Kyoto, Japan in 2006), 5th (Chiangmai, Thailand in 2008), and 6th International Conference on Combustion, Incineration/Pyrolysis (Kuala Lumpur, Malaysia, 2010)

    Google Scholar 

  • International conference on thermal treatment technologies

    Google Scholar 

  • National Research Council (US). Committee on Health Effects of Waste Incineration (2000) Waste incineration and public health. National Academies, Washington

    Google Scholar 

  • National-Incinerator-Conference 1964, 1966, 1968, 1970, 1972, 1974 (visit the proceedings at the WTERT-site of Columbia University, e.g. at http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/1966-National-Incinerator-Conference/). Accessed July 2011

  • National-Waste-Processing-Conference 1976, 1978, 1980, 1982, 1984 1986, 1988, 1990, 1992, 1994 (visit the proceedings at the WTERT-site of Columbia University, e.g., http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/1980-National-Waste-Processing-Conference/). Accessed July 2011

  • North American Waste to Energy Conferences (NAWTEC) http://nawtec.swana.org/. Accessed July 2011

  • EPA (1989) Environment Canada. Proceedings of the international conference on municipal waste combustion. Hollywood, Florida

    Google Scholar 

  • Robinson WD (1986) The solid waste handbook: a practical guide. Wiley, Chichester

    Book  Google Scholar 

  • Rogoff MJ, Screve F (2011) Waste-to-energy: technologies and project implementation. Elsevier Science, Amsterdam

    Google Scholar 

  • Santoleri JJ, Theodore L, Reynolds J (2000) Introduction to hazardous waste incineration. Wiley-IEEE, New York

    Google Scholar 

  • Solid Waste Association of North America (1998) Asian-North American solid waste management conference. Paper presented at the 17th biennial waste processing conference, Atlantic City (Proceedings available at the WTERT-site of Columbia University)

    Google Scholar 

  • Theodore L, Reynolds J (1987) Introduction to hazardous waste incineration. Wiley, New York

    Google Scholar 

  • Warnatz J, Maas U, Dibble RW (2001) Combustion – physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 3rd edn. Springer, Berlin\Heidelberg\New York

    Google Scholar 

  • World Health Organization. Regional Office for Europe (1985) Solid waste management: selected topics. World Health Organization, Copenhagen

    Google Scholar 

  • Young GC (2010) Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons. Wiley, Hoboken

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Buekens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Buekens, A. (2012). Incineration Technologies . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_92

Download citation

Publish with us

Policies and ethics