Skip to main content

Modelling the Overflows Across the Greenland–Scotland Ridge

  • Chapter
Arctic–Subarctic Ocean Fluxes

The Atlantic Meridional Overturning Circulation (AMOC) is part of a global redistribution system in the ocean that carries vast amounts of mass, heat, and freshwater. Within the AMOC, water mass transformations in the Nordic Seas (NS) and the overflows across the Greenland-Scotland Ridge (GSR) contribute significantly to the overturning mass transport. The deep NS are separated by the GSR from direct exchange with the subpolar North Atlantic. Two deeper passages, Denmark Strait (DS, sill depth 630 m) and Faroe Bank Channel (FBC, sill depth 840 m), constrain the deep outflow. The outflow transports are assumed to be governed by hydraulic control (Whitehead 1989, 1998). According to the circulation scheme by Dickson and Brown (1994), there is an overflow of 2.9 Sv (1 Sv = 1 Sverdrup = 106 m3 s–1) through DS, 1.7 Sv through FBC and another 1 Sv from flow across the Iceland%Faroe Ridge (IFR). To the south of the GSR, the overflows sink to depth and then spread along the topography, eventually merging to form a deep boundary current in the western Irminger Sea. During the descent, the dense bottom water flow doubles its volume by entrainment of ambient waters (e.g. Price and Baringer 1994) so that there is a deep water transport of 13.3 Sv once the boundary current reaches Cape Farvel (Dickson and Brown 1994). Thus the overflows and the overflow-related part of the AMOC account for more than 70% of the maximum total overturning, which is estimated from observations to be about 18 Sv (e.g. Macdonald 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baringer MO, Price, JF (1997) Mixing and spreading of the Mediterranean outflow. J Phys Oceanogr 27: 1654–1677.

    Article  Google Scholar 

  • Beckmann E, Döscher R (1997) A method for improved representation of dense water spreading over topography in geopotential coordinate models. J Phys Oceanogr 27: 581–591.

    Article  Google Scholar 

  • Bengtson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Climate, 19: 3518–3543.

    Article  Google Scholar 

  • Biastoch A, Käse RH, Stammer DB (2003) The sensitivity of the Greenland-Scotland overflow to forcing changes. J Phys Oceanogr 33: 2307–2319.

    Article  Google Scholar 

  • Blindheim J, Østerhus S (2005) The Nordic Seas, Main oceanographic features. In: Drange H et al. (eds): The Nordic Seas: An integrated perspective, oceanography, climatology, biogeochemistry, and modelling. American Geophysical Union, Geophysical Monograph 158, pp. 11–37.

    Google Scholar 

  • Borenäs K, Lundberg P (1988) On the deep-water flow through the Faroe Bank Channel. J Geophys Res 93: 1281–1292.

    Article  Google Scholar 

  • Borenäs K, Lundberg P (2004) The Faroe-Bank Channel deep-water overflow. Deep-Sea Res II 51: 335–350.

    Article  Google Scholar 

  • Bruce JG (1995) Eddies southwest of Denmark Strait. Deep-Sea Res I 42: 13–29.

    Article  Google Scholar 

  • Campin J-M, Goosse H (1999) Parameterization of density-driven downslope flow for a coarse-resolution ocean model in z-coordinates. Tellus 51: 412–430.

    Article  Google Scholar 

  • Dickson RR, Brown J (1994) The production of North Atlantic Deep Water: Sources, rates, and pathways. J Geophys Res 99: 12319–12341.

    Article  Google Scholar 

  • Dickson RR, Meincke J, Vassie I, Jungclaus J, Østerhus S (1999) Possible predictability in overflow from the Denmark Strait. Nature 397: 243–246.

    Article  Google Scholar 

  • Dickson RR et al. (2000) The Arctic response to the North Atlantic Oscillation. J Climate 13: 2671–2696.

    Article  Google Scholar 

  • Drange H, Gerdes R, Gao Y, Karcher M, Kauker F, Bentsen M (2005) Ocean general circulation modelling of the Nordic Seas. In: Drange et al. (eds): The Nordic Seas: An integrated perspective, oceanography, climatology, biogeochemistry, and modelling. American Geophysical Union, Geophysical Monograph 158, pp. 199–219.

    Google Scholar 

  • Ezer T (2006) Topographic influence on overflow dynamics: Idealized numerical simulations and the Faroe Bank Channel overflow. J Geophys Res 111: C02002, doi:10.1029/2005JC003195.

    Article  Google Scholar 

  • Gill AE (1977) The hydraulics of rotating channel flow. J Fluid Mech 80: 641–671.

    Article  Google Scholar 

  • Girton JB, Sanford TB (2003) Descent and modification of the overflow plume in the Denmark Strait. J Phys Oceanogr 33: 1351–1364.

    Article  Google Scholar 

  • Gulev SK, Barnier B, Knochel H, Molines J-M, Cottet M (2003) Water mass transformation in the North Atlantic and its impact on the meridional circulation: Insights from an ocean model forced by NCEP-NCAR reanalyses surface fluxes. J Climate 16: 3085–3110.

    Article  Google Scholar 

  • Haak H, Jungclaus JH, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30: 1473, doi:10.1029/2003GL017065.

    Article  Google Scholar 

  • Hallberg R (2000): Time integration of diapycnal diffusion and Richardson-number-dependent mixing in isopycnal coordinate ocean models. Mon Wea Rev 128: 1402–1419.

    Article  Google Scholar 

  • Hansen B, Turell WR, Østerhus S (2001) Decreasing overflow from the Nordic Seas into the Atlantic Ocean through the Faroe Bank Channel since 1950. Nature 411: 927–930.

    Article  Google Scholar 

  • Helfrich KR, Pratt L (2003) Rotating hydraulics and upstream basin circulation. J Phys Oceanogr 33: 1651–1663.

    Google Scholar 

  • Hu A, Meehl GA, Washington WM, Dai A (2004) Response of the Atlantic Thermohaline Circulation to increased atmospheric CO2 in a coupled model. J Climate 17: 4267–4279.

    Article  Google Scholar 

  • Jakobsen PK, Ribergaard MH, Quadfasel D, Schmith T, Hughes CW (2003) Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: Variability from the mesoscale to interannual. J Geophys Res 108: 3251, doi:10.1029/2002JC001554.

    Article  Google Scholar 

  • Jiang L, Garwood RW (1996) Three-dimensional simulations of overflows on the continental slopes. J Phys Oceanogr 26: 1214–1233.

    Article  Google Scholar 

  • Jónsson S, Valdimarsson H (2004) A new path for the Denmark Strait overflow water from the Iceland Sea to Denmark Strait. Geophys Res Lett 31: L03305, doi:10.1029/2003GL019214.

    Article  Google Scholar 

  • Jung T, Hillmer M, Ruprecht E, Kleppek S, Gulev SK, Zolina O (2003) Characteristics of the recent eastward shift of interannual NAO variability. J Climate 16: 3371–3382.

    Article  Google Scholar 

  • Jungclaus JH, Backhaus JO (1994) Application of a transient reduced gravity plume model to the Denmark Strait overflow. J Geophys Res 99: 12375–12396.

    Article  Google Scholar 

  • Jungclaus JH, Vanicek M (1999) Frictionally modified flow in a deep ocean channel: Application to the Vema Channel. J Geophys Res 104: 21123–21136.

    Article  Google Scholar 

  • Jungclaus JH, Hauser J, Käse RH (2001) Cyclogenesis in the Denmark Strait overflow plume. J Phys Oceanogr 31: 3214–3229.

    Article  Google Scholar 

  • Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo J-J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006a) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 19: 3952–3972.

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006b) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33: L17708, doi:10.1029/2006GL026815.

    Article  Google Scholar 

  • Käse RH, Oschlies A (2000) Flow through Denmark Strait. J Geophys Res 105: 28527–28546.

    Article  Google Scholar 

  • Käse RH (2006) A Riccati model for the Denmark Strait overflow variability. Geophys Res Lett 33: L21S09, doi:10.1029/2006GL026915.

    Article  Google Scholar 

  • Killworth PD, McDonald NR (1993) Maximal reduced gravity flux in rotating hydraulics. Geophys Astrophys Fluid Dyn 70: 31–40.

    Article  Google Scholar 

  • Killworth PD, Edwards NR (1999) A turbulent bottom boundary layer code for use in numerical ocean models. J Phys Oceanogr 29: 1221–1238.

    Article  Google Scholar 

  • Killworth PD (2001) On the rate of descent of overflows. J Geophys Res 106: 22267–22275.

    Article  Google Scholar 

  • Köhl A, Käse RH, Stammer D, Serra N (2007) Causes of changes in the Denmark Strait overflow. J Phys Oceanogr 37: 1678–1696.

    Article  Google Scholar 

  • Kösters F, Käse RH, Schmittner A, Herrmann P (2005) The effect of Denmark Srait overflow on the Atlantic Meridional Overturning Circulation. Geophys Res Lett 32: L04602, doi:10.1029/2004GL022112.

    Article  Google Scholar 

  • Legg S, Hallberg RW, Girton JB (2006) Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modelling 11: 69–97.

    Article  Google Scholar 

  • Macdonald AM (1998) The global ocean circulation: a hydrographic estimate and regional analysis. Prog Oceanogr 41: 281–382.

    Article  Google Scholar 

  • Macrander A (2004) Variability and processes of the Denmark Strait overflow. Ph.D. thesis. IfM Geomar, Leibniz Institut für Meereswissenschaften an der Universität Kiel, 177 pp.

    Google Scholar 

  • Macrander A, Send U, Valdimarsson H, Jónsson S, Käse RH (2005) Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait. Geophys Res Lett 32: L06606, doi:10.1029/2004GL021463.

    Article  Google Scholar 

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max- Planck- Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 5: 91–127.

    Article  Google Scholar 

  • Müller WA, Roeckner E (2006) ENSO Impact on Mid-Latitude Circulation Patterns in Future Climate Change Projections. Geophys Res Lett 33: L05711, doi: 10.1029/2005GL025032.

    Article  Google Scholar 

  • Nikolopoulos AN, Borenäs K, Hietala R, Lundberg P (2003) Hydraulic estimates of the Denmark Strait overflow. J Geophys Res 108: 3095, doi:10.1029/2001JC001283.

    Article  Google Scholar 

  • Nilsen JEØ, Gao Y, Drange H, Furevik T, Bentsen M (2003) Simulated North Atlantic-Nordic Seas water mass exchange in an isopycnic coordinate OGCM. Geophys Res Lett 30: 1536, doi:10.1029/2002GL016597.

    Article  Google Scholar 

  • Østerhus S, Turrell WR, Jónsson S, Hansen B (2005) Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophys Res Lett 32: L07603, doi:10.1029/2004GL022188.

    Article  Google Scholar 

  • Özgökmem TM, Fischer PF, Johns WE (2006) Product water mass formation by turbulent density currents from a high-order nonhydrostatic spectral element model. Ocean Modelling 12: 237–267.

    Article  Google Scholar 

  • Pratt LJ, Smeed DA (2004) The physical oceanography of sea straits (Editorial). Deep-Sea Res II 51(4–5): 319.

    Google Scholar 

  • Price JF, Baringer MO (1994) Outflow and deep water production by marginal seas. Progr Oceanogr 33: 161–200.

    Article  Google Scholar 

  • Riemenschneider U, Legg S (2007) Regional simulations of the Faroe Bank channel overflow in a level model. Ocean Modelling 17: 93–122.

    Article  Google Scholar 

  • Roberts MJ, Wood RA (1997) Topography sensitivity studies with a Bryan-Cox type ocean model. J Phys Oceanogr 27: 823–836.

    Article  Google Scholar 

  • Ross CK (1984) Temperature-salinity characteristics of the “overflow” water in Denmark Strait during “Overflow ‘73”. Rapp P-v Reun Cons Int Explor Mer 185: 111–119.

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5, part I: Model description. Max- Planck- Institut für Meteorologie, Report No. 349, 127 pp.

    Google Scholar 

  • Saunders P (1990) Cold outflow from the Faroe Bank Channel. J Phys Oceanogr 20: 29–43.

    Article  Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32: L23710, doi:10.1029/GL024368.

    Article  Google Scholar 

  • Schweckendiek U, Willebrand J (2005) Mechanisms affecting the overturning response in global warming simulations. J Climate 18: 4925–4936.

    Article  Google Scholar 

  • Shi XB, Roed LP, Hackett B (2001) Variability of the Denmark Strait overflow: A numerical study. J Geophys Res 106: 22277–22294.

    Article  Google Scholar 

  • Smith PC (1975) A stream-tube model for bottom boundary currents in the ocean. Deep-Sea Res 22: 853–873.

    Google Scholar 

  • Song Y, Chao Y (2000) An embedded bottom boundary layer formulation for z-coordinate models. J Ocean Atmos Tech 17: 546–560.

    Article  Google Scholar 

  • Stammer D, Wunsch C, Fukumori I, Marshall J (2002) State estimation improves prospects for ocean research. EOS Transactions 83: 294–295.

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: A global ocean hydrography with high-quality Arctic Ocean. J Climate 14: 2079–2087.

    Article  Google Scholar 

  • Stern ME (2004) Transport extremum through Denmark Strait. Geophys Res Lett 31: L12303, doi:10.1029/2004GL020184.

    Article  Google Scholar 

  • Stocker TF et al. (2001) Physical climate processes and feedbacks. In: Climate Change 2001: The scientific basis, Intergovernmental Panel of Climate Change (IPCC) Technical summary of the Working Group 1 Report, Cambridge University Press, New York, pp. 418–470.

    Google Scholar 

  • Whitehead JA (1989) Internal hydraulic control in rotating fluids: Application to oceans. Geophys. Astrophys Fluid Dyn 36: 187–205.

    Article  Google Scholar 

  • Whitehead JA (1998) Topographic control of oceanic flows in deep passages and straits. Rev Geophys 36: 423–440.

    Article  Google Scholar 

  • Willebrand J et al. (2001) Circulation characteristics in three eddy-permitting models of the North Atlantic. Progr Oceanogr 48: 123–161.

    Article  Google Scholar 

  • Winton M, Hallberg RW, Gnanadesikan A (1998) Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J Phys Oceanogr 28: 2163–2174.

    Article  Google Scholar 

  • Xu X, Chang YS, Peters H, Özgökmem TM, Chassignet EP (2006) Parameterization of gravity current entrainment for ocean circulation models using a high-order 3d nonhydrostatic spectral element model. Ocean Modelling 14: 19–44.

    Article  Google Scholar 

  • Zhang J, Steele M, Rothrock DA, Lindsay RW (2004) Increasing exchanges at Greenland-Scotland Ridge and their links with the North Atlantic Oscillation and Arctic sea ice. Geophys Res Lett 31: L09307, doi:10.1029/2003GL019304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Jungclaus, J.H., Macrander, A., Käse, R.H. (2008). Modelling the Overflows Across the Greenland–Scotland Ridge. In: Dickson, R.R., Meincke, J., Rhines, P. (eds) Arctic–Subarctic Ocean Fluxes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6774-7_23

Download citation

Publish with us

Policies and ethics