Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 405 Accesses

A primary research objective in the study of Archean rocks (>2.5 Ga) has been to determine conditions on the surface of the Earth during the first two billion years of its history. Recent advances in isotope geochemistry and geochemical microanalysis have allowed new insights into the earliest few hundred million years of Earth’s history, and have pushed back the time at which the first life could have emerged.

The earliest subdivision of the Archean Eon beginning with Earth’s accretion at 4.56 Ga and extending to ca. 4.0–3.8 Ga, has been called both the Priscoan (“previous time”) Era and Hadean (“Hell-like”) Era. These divisions of geologic time are based on the inherent bias of the rock record, making distinctions in part based on whether or not rocks have survived. The term “Hadean” is also based on the preconception that Earth was so hot from formation and bombardment by meteorites that the atmosphere was dominated by steam and rock debris, and solid material would have been...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arrhenius, G., and Lepland, A., 2000. Accretion of moon and earth and the emergence of life. Chem. Geol., 169, 69–82.

    Article  Google Scholar 

  • Bada, J.L., Bigham, C., and Miller, S.L., 1994. Impact melting of frozen oceans on the early earth: Implications for the origin of life. Proceedings of the National Academic Science, 91, 1248–1250.

    Article  Google Scholar 

  • Bowring, S.A., and Housh, T., 1995. The earth’s early evolution. Science, 269, 1535–1540.

    Article  Google Scholar 

  • Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A., and Grassineau, N.V., 2002. Questioning the evidence for earth’s oldest fossils. Nature, 416, 76–81.

    Article  Google Scholar 

  • Campbell, I.H., and Taylor, S.R., 1983. No water, no granites – no oceans, no continents. Geoph. Res. Lett., 10, 1061–1064.

    Article  Google Scholar 

  • Canup, R.M., and Righter, K., 2000. Origin of the Earth and Moon. Tucson: University of Arizona Press, 555p.

    Google Scholar 

  • Cavosie, A.J., Wilde, S.A., Liu, D., Valley, J.W., and Weiblen, P.W., 2004. Internal zoning and U-Th-Pb chemistry of the Jack Hills detrital zircons: a mineral record of early Archean to mesoproterozoic magmatism. Precam. Res., 135, 251–279.

    Article  Google Scholar 

  • Cavosie, A.J., Valley, J.W., Wilde, S.A., and EIMF, 2005. Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the early Archean. Ear. Plan. Sci. Lett. 235, 663–681.

    Google Scholar 

  • Cloud, P., 1972. A working model of the primitive earth. Am. J. Sci., 272, 537–548.

    Google Scholar 

  • Cohen, B.A., Swindle, T.D., and Kring, D.A., 2000. Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science, 290, 1754–1756.

    Article  Google Scholar 

  • Compston, W., and Pidgeon, R.T., 1986. Jack Hills, Evidence of more very old detrital zircons in Western Australia. Nature, 321, 766–769.

    Article  Google Scholar 

  • Fedo, C.M., Myers, J.S., and Appel, P.W.U., 2001. Depositional setting and paleogeographic implications of earth’s oldest supracrustal rocks, the >3.7Ga Isua greenstone belt, West Greenland. Sed. Geol., 141/142, 61–77.

    Article  Google Scholar 

  • Froude, D.O., Ireland, T.R., Kinny, P.D., Williams, I.S., Compston, W., Williams, I.R., and Myers, J.S., 1983. Ion microprobe identification of 4,100–4,200-Myr-old terrestrial zircons. Nature, 304, 616–618.

    Article  Google Scholar 

  • Halliday, A.N., 2000. Terrestrial accretion rates and the origin of the moon. Ear. Plan. Sci. Lett., 176, 17–30.

    Article  Google Scholar 

  • Hartmann, W.K., Ryder, G., Dones, L., and Grinspoon, D., 2000. The time-dependent intense bombardment of the primordial earth/moon system. In: Canup, R.M., and Righter, K. (eds.), Origin of the Earth and Moon. Tucson: University of Arizona Press, pp. 493–512.

    Google Scholar 

  • Jacobsen, S.B., 2003. Lost terrains of early Earth. Nature, 421, 901–903.

    Article  Google Scholar 

  • Jones, J.H., and Palme, H., 2000. Geochemical constraints on the origin of the Earth and Moon. In: Canup, R.M., and Righter, K. (eds.), Origin of the Earth and Moon. Tucson: University of Arizona Press, pp. 197–216.

    Google Scholar 

  • Knauth, L.P., and Lowe, D.R., 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull., 115, 566–580.

    Article  Google Scholar 

  • Kyte, F.T., Shukolyukov, A., Lugmair, G.W., Lowe, D.R., and Byerly, G.R., 2003. Early Archean spherule beds: Chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology, 31, 283–286.

    Article  Google Scholar 

  • Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., and Compston, W., 1992. The earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta, 56, 1281–1300.

    Article  Google Scholar 

  • Mojzsis, S.J., Harrison, T.M., and Pidgeon, R.T., 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the earth’s surface 4,300 Myr ago. Nature, 409, 178–181.

    Article  Google Scholar 

  • Muehlenbachs, K., 1998. The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem. Geol., 145, 263–273.

    Article  Google Scholar 

  • Myers, J.S., and Crowley, J.L., 2000. Vestiges of life in the oldest Greenland rocks? A review of early Archean geology in the Godthabsfjord region, and reappraisal of field evidence for >3850 Ma life on Akilia. Precam. Res., 103, 101–124.

    Article  Google Scholar 

  • Nisbet, E.G., and Sleep, N.H., 2001. The habitat and nature of early life. Nature, 409, 1083–1091.

    Article  Google Scholar 

  • Nutman, A.P., Friend, C.R.L., and Bennett, V.C., 2001. Review of the oldest (4400–3600 Ma) geological and mineralogical record: Glimpses of the beginning. Episodes, 24, 93–101.

    Google Scholar 

  • Patterson, C.C., 1956. Age of meteorites and the earth. Geochim. Cosmochim. Acta, 19, 157–159.

    Google Scholar 

  • Peck, W.H., King, E.M., and Valley, J.W., 2000. Oxygen isotope perspective on Precambrian crustal growth and maturation. Geology, 28, 363–366.

    Article  Google Scholar 

  • Peck, W.H., Valley, J.W., Wilde, S.A., and Graham, C.M., 2001. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga Zircons: Ion microprobe evidence for high δ18O continental crust in the early Archean. Geochim. Cosmochim. Acta, 65, 4215–4229.

    Article  Google Scholar 

  • Perry, E.C. Jr., 1967. The oxygen isotope chemistry of ancient cherts. Earth Planet. Sci. Lett., 3, 62–66.

    Article  Google Scholar 

  • Perry, E.C., and Lefticariu, L., 2003. Formation and geochemistry of Precambrian cherts. In: Holland, H., and Turekian, K. (eds.), Treatise on Geochemistry, Amsterdam: Elsevier, pp. 99–113.

    Google Scholar 

  • Pollock, H.N., 1997. Thermal characteristics of the Archaean. In: deWit, M., and Ashwal, L. (eds.), Greenstone Belts. Oxford: Oxford University Press, pp. 223–232.

    Google Scholar 

  • Rasmussen, B., 2000. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide. Nature, 405, 676–679.

    Article  Google Scholar 

  • Rosing, M.T., 1999. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Article  Google Scholar 

  • Sagan, C., and Chyba, C.F., 1997. The early faint Sun paradox: Organic shielding of ultraviolet-labile greenhouse gases. Science, 276, 1217–1221.

    Article  Google Scholar 

  • Schidlowski, M., 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: Evolution of a concept. Precam. Res., 106, 117–134.

    Article  Google Scholar 

  • Schoenberg, R., Kamber, B.S., Collerson, K.D., and Moorbath, S., 2002. Tungsten isotope evidence from approximately 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature, 418, 403–405.

    Article  Google Scholar 

  • Schopf, J.W., 1993. Microfossils of the early Archean Apex Chert: New evidence of the antiquity of life. Science, 260, 640–646.

    Article  Google Scholar 

  • Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J., and Czaja, A.D., 2002. Laser-Raman imagery of Earth’s earliest fossils. Nature, 416, 73–76.

    Article  Google Scholar 

  • Sleep, N.H., Zahnle, K., and Neuhoff, P.S., 2001. Initiation of clement surface conditions on the earliest earth. Proceedings of the. National. Academy of. Science, 98, 3666–3672.

    Article  Google Scholar 

  • Taylor, S.R., 1992. Solar system evolution: A new perspective. New York: Cambridge University Press, 307pp.

    Google Scholar 

  • Valley, J.W., 2003. Oxygen isotopes in zircon. In Zircon (eds. Hanchar, J., and Hoskins, P). Rev. Miner. Geochem., 53, 343–385.

    Google Scholar 

  • Valley, J.W., Peck, W.H., King, E.M., and Wilde, S.A., 2002. A cool early earth. Geology, 30, 351–354.

    Article  Google Scholar 

  • Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei, C.S., 2005. 4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon.

    Google Scholar 

  • Van Kranendonk, M.J., 2001. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: new evidence from the c. 3460 Ma Warrawoona Group, Pilbara, Western Australia. Earth System Processes Programmes with Abstracts, 91–92.

    Google Scholar 

  • Wilde, S.A., Valley, J.W., Peck, W.H., and Graham, C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 gyr ago. Nature, 409, 175–178.

    Article  Google Scholar 

  • Zahnle, K.J., Kasting, J.F., and Pollack, J.B., 1988. Evolution of a steam atmosphere during earth’s accretion. Icarus, 74, 62–97.

    Article  Google Scholar 

  • Zhang, Y., 2002. The age and accretion of the earth. Earth Sci. Rev., 59, 235–263.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Peck, W.H., Valley, J.W. (2009). Archean Environments. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_11

Download citation

Publish with us

Policies and ethics