Skip to main content

Measurement of Ice-Binding Protein Inhibition of Non-ice Crystal Growth

  • Protocol
  • First Online:
Ice Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2730))

  • 246 Accesses

Abstract

The kinetic hydrate inhibitor (KHI) was developed to prevent the formation of undesirable gas hydrate crystals in natural gas pipelines. Studies of antifreeze proteins (AFPs) are gaining attention in the natural gas research field due to their performance in crystal growth inhibition, excellent biodegradation, and low toxicity. Studies of AFPs may provide clues for developing future commercial KHIs used offshore. This chapter presents a simple method of evaluating AFP inhibitory performance as a KHI on tetrahydrofuran (THF) hydrate growth with a unidirectional growth apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74(6):2589–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Knight CA (2000) Adding to the antifreeze agenda. Nature 406(6793):249–251

    Article  CAS  PubMed  Google Scholar 

  3. Furukawa Y, Inohara N, Yokoyama E (2005) Growth patterns and interfacial kinetic supercooling at ice/water interfaces at which anti-freeze glycoprotein molecules are adsorbed. J Cryst Growth 275(1-2):167–174

    Article  CAS  Google Scholar 

  4. Nagashima K, Furukawa Y (1997) Nonequilibrium effect of anisotropic interface kinetics on the directional growth of ice crystals. J Cryst Growth 171(3-4):577–585

    Article  CAS  Google Scholar 

  5. Zepeda S, Uda Y, Furukawa Y (2008) Directly probing the antifreeze protein kinetics at the ice/solution interface (< special issue> crystal growth controlled by macromolecules). J Jpn Assoc Cryst Growth 35(3):151–160

    CAS  Google Scholar 

  6. Antson AA, Smith DJ, Roper DI, Lewis S, Caves LS, Verma CS, Buckley SL, Lillford PJ, Hubbard RE (2001) Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 305(4):875–889

    Article  CAS  PubMed  Google Scholar 

  7. Sloan ED Jr, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  8. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26(8):851–855

    Article  CAS  Google Scholar 

  9. Kelland MA (2006) History of the development of low dosage hydrate inhibitors. Energy Fuel 20(3):825–847

    Article  CAS  Google Scholar 

  10. Kelland MA (2018) A review of kinetic hydrate inhibitors from an environmental perspective. Energy Fuel 32(12):12001–12012

    Article  CAS  Google Scholar 

  11. Norwegian Oil and Gas Association (2019) Recommended guidelines for emission and discharge reporting. The Norwegian Oil and Gas Association, Stavanger

    Google Scholar 

  12. Kelland MA (2014) Production chemicals for the oil and gas industry, 2nd edn. CRC Press, Boca Raton. https://doi.org/10.1201/b16648

    Book  Google Scholar 

  13. Organization for Economic Co-operation and Development (OECD) (2002) OECD guideline for testing of chemicals: biodegradability in seawater. Paris, OECD, p 27

    Google Scholar 

  14. Gough SR, Davidson DW (1971) Composition of tetrahydrofuran hydrate and the effect of pressure on the decomposition. Can J Chem 49(16):2691–2699

    Article  CAS  Google Scholar 

  15. Zeng H, Wilson LD, Walker VK, Ripmeester JA (2006) Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation. J Am Chem Soc 128(9):2844–2850

    Article  CAS  PubMed  Google Scholar 

  16. Zeng H, Moudrakovski IL, Ripmeester JA, Walker VK (2006) Effect of antifreeze protein on nucleation, growth and memory of gas hydrates. AICHE J 52(9):3304–3309

    Article  CAS  Google Scholar 

  17. Daraboina N, Ripmeester J, Walker VK, Englezos P (2011) Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 1. High pressure calorimetry. Energy Fuel 25(10):4392–4397

    Article  CAS  Google Scholar 

  18. Nada H, Furukawa Y (2012) Antifreeze proteins: computer simulation studies on the mechanism of ice growth inhibition. Polym J 44(7):690–698

    Article  CAS  Google Scholar 

  19. Yagasaki T, Matsumoto M, Tanaka H (2018) Molecular dynamics study of kinetic hydrate inhibitors: the optimal inhibitor size and effect of guest species. J Phys Chem C 123(3):1806–1816

    Article  Google Scholar 

  20. Muraoka M, Kelland MA, Yamamoto Y, Tenma N (2020) Tetrahydrofuran hydrate crystal growth inhibitor performance and mechanism of quaternary ammonium and phosphonium salts. Cryst Growth Des 20(8):5000–5005

    Article  CAS  Google Scholar 

  21. Muraoka M, Kelland MA, Yamamoto Y, Suzuki K (2021) Critical growth rate of hydrate crystal growth inhibitors in the low growth rate region. Cryst Growth Des 21(9):4979–4985

    Article  CAS  Google Scholar 

  22. Anderson R, Mozaffar H, Tohidi B (2011) Development of a crystal growth inhibition based method for the evaluation of kinetic hydrate inhibitors. In Proceedings of the 7th International Conference on Gas Hydrates (pp. 17–21). Edinburgh: Domestic Organizing Committee ICGH-7

    Google Scholar 

  23. Ke W, Kelland MA (2016) Kinetic hydrate inhibitor studies for gas hydrate systems: a review of experimental equipment and test methods. Energy Fuel 30(12):10015–10028

    Article  CAS  Google Scholar 

  24. Lederhos JP, Long JP, Sum A, Christiansen RL, Sloan ED Jr (1996) Effective kinetic inhibitors for natural gas hydrates. Chem Eng Sci 51(8):1221–1229

    Article  CAS  Google Scholar 

  25. Chua PC, Kelland MA (2012) Tetra(iso-hexyl)ammonium bromide—the most powerful quaternary ammonium-based tetrahydrofuran crystal growth inhibitor and synergist with polyvinylcaprolactam kinetic gas hydrate inhibitor. Energy Fuel 26(2):1160–1168

    Article  CAS  Google Scholar 

  26. Muraoka M, Susuki N, Yamamoto Y (2016) Evaluation of the performance of kinetic inhibitors for clathrate hydrate using unidirectional growth apparatus. RSC Adv 6(68):63880–63885

    Article  CAS  Google Scholar 

  27. Muraoka M, Ohtake M, Yamamoto Y (2019) Kinetic inhibition effect of Type I and III antifreeze proteins on unidirectional tetrahydrofuran hydrate crystal growth. RSC Adv 9(20):11530–11537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AFP types I and III are currently (2021) supplied by Nichirei Co., Japan, for testing and research purposes only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiro Muraoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muraoka, M. (2024). Measurement of Ice-Binding Protein Inhibition of Non-ice Crystal Growth. In: Drori, R., Stevens, C. (eds) Ice Binding Proteins. Methods in Molecular Biology, vol 2730. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3503-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3503-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3502-5

  • Online ISBN: 978-1-0716-3503-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics