Skip to main content

Chemical and Physical Mutagenesis Approaches for Identification of Herbicide and Drought Tolerance Traits in Wheat

  • Protocol
  • First Online:
Accelerated Breeding of Cereal Crops

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Since their inception, plant species have gathered numerous genetic polymorphisms which became fodder for evolutionary processes to shape the modern-day plants, agriculture and our food habits. However, while the current agricultural practices have substantially narrowed down this gene pool variability, the demand for novel and improved traits is ever persistent. Therefore, over decades, various techniques for artificial induction of mutations have been optimized. Indeed, induced mutagenesis has become central to the process of generating novel traits in crop cultivars and in understanding of gene function, genetic pathways and evolutionary processes.

In this chapter, using the complex polyploid crop species wheat as a case study, we have enlisted a step-by-step procedure for induction of polymorphisms by ethyl methanesulphonate and gamma radiation as representatives for chemical and physical mutagens, respectively. We explain the mutant screening protocols in detail using herbicide resistance and drought stress tolerance as traits of interest. We also discuss the state-of-the-art genomic techniques and pipelines that can be followed for identification of the causal mutations in polyploid crops, such as wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avni R, Nave M, Barad O et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  Google Scholar 

  2. Sidhu JS, Ramakrishnan SM, Ali S et al (2019) Assessing the genetic diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye. PLoS One 14:e0214519

    Article  CAS  Google Scholar 

  3. Velu G, Crespo Herrera L, Guzman C et al (2018) Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. Front Plant Sci 9:1971

    Article  Google Scholar 

  4. Martin AR, Cadotte MW, Isaac ME et al (2019) Regional and global shifts in crop diversity through the Anthropocene. PLoS One 14:e0209788

    Article  CAS  Google Scholar 

  5. Liu W, Chen L, Zhang S et al (2019) Decrease of gene expression diversity during domestication of animals and plants. BMC Evol Biol 19:19

    Article  Google Scholar 

  6. Vellend M, Baeten L, Becker-Scarpitta A et al (2017) Plant biodiversity change across scales during the Anthropocene. Annu Rev Plant Biol 68:563–586

    Article  CAS  Google Scholar 

  7. FAO. Harvesting Nature's Diversity, http://www.fao.org/3/v1430e/V1430E04.htm

  8. Sikora P, Chawade A, Larsson M, et al (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding, https://www.hindawi.com/journals/ijpg/2011/314829/

  9. Zhang P, Dundas IS, Xu SS et al (2017) Chromosome engineering techniques for targeted Introgression of rust resistance from wild wheat relatives. Methods Mol Biol 1659:163–172

    Article  CAS  Google Scholar 

  10. Stadler LJ (1928) Genetic effects of X-rays in maize. Proc Natl Acad Sci U S A 14:69

    Article  CAS  Google Scholar 

  11. Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn | Wiley, https://www.wiley.com/en-us/Principles+of+Plant+Genetics+and+Breeding%2C+2nd+Edition-p-9780470664766

  12. Chakrabarti SN (1999) PNR 519, a promising fine grained rice variety. Journal of Nuclear Agriculture and Biology 28: 116–122

    Google Scholar 

  13. Chakrabarti SN (1995) Mutation breeding in India with particular reference to PNR rice varieties, https://eurekamag.com/research/002/901/002901468.php

  14. de Oliveira Camargo CE, Tulmann Neto A, Ferreira Filho AWP et al (2000) Genetic control of aluminum tolerance in mutant lines of the wheat cultivar Anahuac. Euphytica 114:47–53

    Article  Google Scholar 

  15. Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  16. Gupta PK (1998) Mutation breeding in cereals and legumes. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Springer Netherlands, Dordrecht, pp 311–332

    Chapter  Google Scholar 

  17. Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401

    Article  CAS  Google Scholar 

  18. Yang C, Mulligan BJ, Wilson ZA (2004) Molecular genetic analysis of pollen irradiation mutagenesis in Arabidopsis. 164:279–288

    Google Scholar 

  19. Settles AM (2020) EMS mutagenesis of maize pollen. Methods Mol Biol 2122:25–33

    Article  CAS  Google Scholar 

  20. Serrat X, Esteban R, Guibourt N et al (2014) EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10:5

    Article  Google Scholar 

  21. Oladosu Y, Rafii MY, Abdullah N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30:1–16

    Article  CAS  Google Scholar 

  22. Amano E (2006) Use of induced mutants in rice breeding in Japan (INIS-XA--965). International Atomic Energy Agency (IAEA)

    Google Scholar 

  23. Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963

    Article  CAS  Google Scholar 

  24. Mamanova L, Coffey AJ, Scott CE et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118

    Article  CAS  Google Scholar 

  25. Henry IM, Nagalakshmi U, Lieberman MC et al (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26:1382–1397

    Article  CAS  Google Scholar 

  26. Krasileva KV, Vasquez-Gross HA, Howell T et al (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci U S A 114:E913–E921

    Article  CAS  Google Scholar 

  27. Mo Y, Howell T, Vasquez-Gross H et al (2018) Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Gen Genomics 293:463–477

    Article  CAS  Google Scholar 

  28. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  Google Scholar 

  29. Sim N-L, Kumar P, Hu J et al (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457

    Article  CAS  Google Scholar 

  30. Taylor NE, Greene EA (2003) PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res 31:3808–3811

    Article  CAS  Google Scholar 

  31. Talamè V, Bovina R, Sanguineti MC et al (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol 6:477–485

    Article  Google Scholar 

  32. Wang N, Long T, Yao W et al (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604

    Article  CAS  Google Scholar 

  33. Maluszynski M, Szarejko I, Bhatia CR, et al (2009) Methodologies for generating variability. Part 4: Mutation techniques, FAO

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Vaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vaid, N., Samuel, M.A., Kagale, S., Soolanayakanahally, R. (2022). Chemical and Physical Mutagenesis Approaches for Identification of Herbicide and Drought Tolerance Traits in Wheat. In: Bilichak, A., Laurie, J.D. (eds) Accelerated Breeding of Cereal Crops. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1526-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1526-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1525-6

  • Online ISBN: 978-1-0716-1526-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics