Skip to main content

Known Inhibitors of RNA Helicases and Their Therapeutic Potential

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2209))

Abstract

RNA helicases are proteins found in all kingdoms of life, and they are associated with all processes involving RNA from transcription to decay. They use NTP binding and hydrolysis to unwind duplexes, to remodel RNA structures and protein-RNA complexes, and to facilitate the unidirectional metabolism of biological processes. Viral, bacterial, and eukaryotic parasites have an intimate need for RNA helicases in their reproduction. Moreover, various disorders, like cancers, are often associated with a perturbation of the host’s helicase activity. Thus, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. In this review, we provide an overview of the different targeting strategies against helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on the proteins, and the therapeutic potential of these compounds in the treatment of various disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silverman E, Edwalds-Gilbert G, Lin RJ (2003) DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312:1–16. https://doi.org/10.1016/s0378-1119(03)00626-7

    Article  CAS  PubMed  Google Scholar 

  2. Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8(2):251–262. https://doi.org/10.1016/s1097-2765(01)00329-x

    Article  CAS  PubMed  Google Scholar 

  3. Jarmoskaite I, Russell R (2014) RNA helicase proteins as chaperones and remodelers. Annu Rev Biochem 83:697–725. https://doi.org/10.1146/annurev-biochem-060713-035546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355(6358):374–376. https://doi.org/10.1038/355374a0

    Article  CAS  PubMed  Google Scholar 

  5. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945–951

    Article  CAS  Google Scholar 

  6. Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12(1):123–133. https://doi.org/10.1016/s0959-440x(02)00298-1

    Article  CAS  PubMed  Google Scholar 

  7. Berger JM (2008) SnapShot: nucleic acid helicases and translocases. Cell 134(5):888–888.e881. https://doi.org/10.1016/j.cell.2008.08.027

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20(3):313–324. https://doi.org/10.1016/j.sbi.2010.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24(5):192–198. https://doi.org/10.1016/s0968-0004(99)01376-6

    Article  PubMed  Google Scholar 

  10. Banroques J, Cordin O, Doere M, Linder P, Tanner NK (2011) Analyses of the functional regions of DEAD-box RNA «  helicases » with deletion and chimera constructs tested in vivo and in vitro. J Mol Biol 413(2):451–472. https://doi.org/10.1016/j.jmb.2011.08.032

    Article  CAS  PubMed  Google Scholar 

  11. Steimer L, Klostermeier D (2012) RNA helicases in infection and disease. RNA Biol 9(6):751–771. https://doi.org/10.4161/rna.20090

    Article  CAS  PubMed  Google Scholar 

  12. Bourgeois CF, Mortreux F, Auboeuf D (2016) The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 17(7):426–438. https://doi.org/10.1038/nrm.2016.50

    Article  CAS  PubMed  Google Scholar 

  13. Briguglio I, Piras S, Corona P, Carta A (2011) Inhibition of RNA helicases of ssRNA(+) virus belonging to Flaviviridae, Coronaviridae and Picornaviridae families. Int J Med Chem 2011:213135. https://doi.org/10.1155/2011/213135

    Article  CAS  PubMed  Google Scholar 

  14. Kwong AD, Rao BG, Jeang KT (2005) Viral and cellular RNA helicases as antiviral targets. Nat Rev Drug Discov 4(10):845–853. https://doi.org/10.1038/nrd1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ranji A, Boris-Lawrie K (2010) RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol 7(6):775–787. https://doi.org/10.4161/rna.7.6.14249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mastrangelo E, Bolognesi M, Milani M (2012) Flaviviral helicase: insights into the mechanism of action of a motor protein. Biochem Biophys Res Commun 417(1):84–87. https://doi.org/10.1016/j.bbrc.2011.11.060

    Article  CAS  PubMed  Google Scholar 

  17. Fullam A, Schroder M (2013) DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim Biophys Acta 1829(8):854–865. https://doi.org/10.1016/j.bbagrm.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  18. Ariumi Y (2014) Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 5:423. https://doi.org/10.3389/fgene.2014.00423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schroder M (2010) Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem Pharmacol 79(3):297–306. https://doi.org/10.1016/j.bcp.2009.08.032

    Article  CAS  PubMed  Google Scholar 

  20. Marchat LA, Arzola-Rodriguez SI, Hernandez-de la Cruz O, Lopez-Rosas I, Lopez-Camarillo C (2015) DEAD/DExH-box RNA helicases in selected human parasites. Korean J Parasitol 53(5):583–595. https://doi.org/10.3347/kjp.2015.53.5.583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tuteja R (2017) Unraveling the importance of the malaria parasite helicases. FEBS J 284(16):2592–2603. https://doi.org/10.1111/febs.14109

    Article  CAS  PubMed  Google Scholar 

  22. Gargantini PR, Lujan HD, Pereira CA (2012) In silico analysis of trypanosomatids’ helicases. FEMS Microbiol Lett 335(2):123–129. https://doi.org/10.1111/j.1574-6968.2012.02644.x

    Article  CAS  PubMed  Google Scholar 

  23. Abdelhaleem M (2004) Do human RNA helicases have a role in cancer? Biochim Biophys Acta 1704(1):37–46. https://doi.org/10.1016/j.bbcan.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  24. Heerma van Voss MR, van Diest PJ, Raman V (2017) Targeting RNA helicases in cancer: the translation trap. Biochim Biophys Acta Rev Cancer 1868(2):510–520. https://doi.org/10.1016/j.bbcan.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  25. Chu J, Pelletier J (2018) Therapeutic opportunities in eukaryotic translation. Cold Spring Harb Perspect Biol 10(6). https://doi.org/10.1101/cshperspect.a032995

  26. Zhao L, Mao Y, Zhou J, Zhao Y, Cao Y, Chen X (2016) Multifunctional DDX3: dual roles in various cancer development and its related signaling pathways. Am J Cancer Res 6(2):387–402

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bol GM, Xie M, Raman V (2015) DDX3, a potential target for cancer treatment. Mol Cancer 14:188. https://doi.org/10.1186/s12943-015-0461-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu J, Pelletier J (2015) Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochim Biophys Acta 1849(7):781–791. https://doi.org/10.1016/j.bbagrm.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  29. Bareclev C, Vaitkevicius K, Netterling S, Johansson J (2014) DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression. RNA Biol 11(11):1457–1466. https://doi.org/10.1080/15476286.2014.996099

    Article  PubMed  Google Scholar 

  30. Cencic R, Pelletier J (2013) Throwing a monkey wrench in the motor: targeting DExH/D box proteins with small molecule inhibitors. Biochim Biophys Acta 1829(8):894–903. https://doi.org/10.1016/j.bbagrm.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  31. Borowski P, Niebuhr A, Schmitz H, Hosmane RS, Bretner M, Siwecka MA, Kulikowski T (2002) NTPase/helicase of Flaviviridae: inhibitors and inhibition of the enzyme. Acta Biochim Pol 49(3):597–614

    Article  CAS  Google Scholar 

  32. Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN (2013) Discovering new medicines targeting helicases: challenges and recent progress. J Biomol Screen 18(7):761–781. https://doi.org/10.1177/1087057113482586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pommier Y, Kiselev E, Marchand C (2015) Interfacial inhibitors. Bioorg Med Chem Lett 25(18):3961–3965. https://doi.org/10.1016/j.bmcl.2015.07.032

    Article  CAS  PubMed  Google Scholar 

  34. Abdelkrim YZ, Harigua-Souiai E, Barhoumi M, Banroques J, Blondel A, Guizani I, Tanner NK (2018) The steroid derivative 6-aminocholestanol inhibits the DEAD-box helicase eIF4A (LieIF4A) from the Trypanosomatid parasite Leishmania by perturbing the RNA and ATP binding sites. Mol Biochem Parasitol 226:9–19. https://doi.org/10.1016/j.molbiopara.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  35. Shiffman ML (2009) What future for ribavirin? Liver Int 29(Suppl 1):68–73. https://doi.org/10.1111/j.1478-3231.2008.01936.x

    Article  PubMed  Google Scholar 

  36. Zhang N, Chen HM, Koch V, Schmitz H, Liao CL, Bretner M, Bhadti VS, Fattom AI, Naso RB, Hosmane RS, Borowski P (2003) Ring-expanded ("fat") nucleoside and nucleotide analogues exhibit potent in vitro activity against flaviviridae NTPases/helicases, including those of the West Nile virus, hepatitis C virus, and Japanese encephalitis virus. J Med Chem 46(19):4149–4164. https://doi.org/10.1021/jm030842j

    Article  CAS  PubMed  Google Scholar 

  37. Yedavalli VS, Zhang N, Cai H, Zhang P, Starost MF, Hosmane RS, Jeang KT (2008) Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J Med Chem 51(16):5043–5051. https://doi.org/10.1021/jm800332m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maga G, Falchi F, Radi M, Botta L, Casaluce G, Bernardini M, Irannejad H, Manetti F, Garbelli A, Samuele A, Zanoli S, Este JA, Gonzalez E, Zucca E, Paolucci S, Baldanti F, De Rijck J, Debyser Z, Botta M (2011) Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. Chem Med Chem 6(8):1371–1389. https://doi.org/10.1002/cmdc.201100166

    Article  CAS  PubMed  Google Scholar 

  39. Chan CH, Chen CM, Lee YW, You LR (2019) DNA damage, liver injury, and tumorigenesis: consequences of DDX3X loss. Mol Cancer Res 17(2):555–566. https://doi.org/10.1158/1541-7786.mcr-18-0551

    Article  CAS  PubMed  Google Scholar 

  40. Ditton HJ, Zimmer J, Kamp C, Rajpert-De Meyts E, Vogt PH (2004) The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 13(19):2333–2341. https://doi.org/10.1093/hmg/ddh240

    Article  CAS  PubMed  Google Scholar 

  41. Maga G, Gemma S, Fattorusso C, Locatelli GA, Butini S, Persico M, Kukreja G, Romano MP, Chiasserini L, Savini L, Novellino E, Nacci V, Spadari S, Campiani G (2005) Specific targeting of hepatitis C virus NS3 RNA helicase. Discovery of the potent and selective competitive nucleotide-mimicking inhibitor QU663. Biochemistry 44(28):9637–9644. https://doi.org/10.1021/bi047437u

    Article  CAS  PubMed  Google Scholar 

  42. Preugschat F, Averett DR, Clarke BE, Porter DJ (1996) A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain. J Biol Chem 271(40):24449–24457. https://doi.org/10.1074/jbc.271.40.24449

    Article  CAS  PubMed  Google Scholar 

  43. Manfroni G, Paeshuyse J, Massari S, Zanoli S, Gatto B, Maga G, Tabarrini O, Cecchetti V, Fravolini A, Neyts J (2009) Inhibition of subgenomic hepatitis C virus RNA replication by acridone derivatives: identification of an NS3 helicase inhibitor. J Med Chem 52(10):3354–3365. https://doi.org/10.1021/jm801608u

    Article  CAS  PubMed  Google Scholar 

  44. Stankiewicz-Drogon A, Palchykovska LG, Kostina VG, Alexeeva IV, Shved AD, Boguszewska-Chachulska AM (2008) New acridone-4-carboxylic acid derivatives as potential inhibitors of hepatitis C virus infection. Bioorg Med Chem 16(19):8846–8852. https://doi.org/10.1016/j.bmc.2008.08.074

    Article  CAS  PubMed  Google Scholar 

  45. Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11–12):444–450. https://doi.org/10.1016/j.drudis.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  46. Radi M, Falchi F, Garbelli A, Samuele A, Bernardo V, Paolucci S, Baldanti F, Schenone S, Manetti F, Maga G, Botta M (2012) Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Bioorg Med Chem Lett 22(5):2094–2098. https://doi.org/10.1016/j.bmcl.2011.12.135

    Article  CAS  PubMed  Google Scholar 

  47. Fazi R, Tintori C, Brai A, Botta L, Selvaraj M, Garbelli A, Maga G, Botta M (2015) Homology model-based virtual screening for the identification of human helicase DDX3 inhibitors. J Chem Inf Model 55(11):2443–2454. https://doi.org/10.1021/acs.jcim.5b00419

    Article  CAS  PubMed  Google Scholar 

  48. Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, Levine A, Irving A, Korz D, Tantravedi S, Heerma van Voss MR, Gabrielson K, Bordt EA, Polster BM, Cope L, van der Groep P, Kondaskar A, Rudek MA, Hosmane RS, van der Wall E, van Diest PJ, Tran PT, Raman V (2015) Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med 7(5):648–669. https://doi.org/10.15252/emmm.201404368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Absmeier E, Santos KF, Wahl MC (2016) Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 15(24):3362–3377. https://doi.org/10.1080/15384101.2016.1249549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cordin O, Beggs JD (2013) RNA helicases in splicing. RNA Biol 10(1):83–95. https://doi.org/10.4161/rna.22547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iwatani-Yoshihara M, Ito M, Klein MG, Yamamoto T, Yonemori K, Tanaka T, Miwa M, Morishita D, Endo S, Tjhen R, Qin L, Nakanishi A, Maezaki H, Kawamoto T (2017) Discovery of allosteric inhibitors targeting the Spliceosomal RNA helicase Brr2. J Med Chem 60(13):5759–5771. https://doi.org/10.1021/acs.jmedchem.7b00461

    Article  CAS  PubMed  Google Scholar 

  52. Harigua-Souiai E, Abdelkrim YZ, Bassoumi-Jamoussi I, Zakraoui O, Bouvier G, Essafi-Benkhadir K, Banroques J, Desdouits N, Munier-Lehmann H, Barhoumi M, Tanner NK, Nilges M, Blondel A, Guizani I (2018) Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLoS Negl Trop Dis 12(1):e0006160. https://doi.org/10.1371/journal.pntd.0006160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beuchet P, el Kihel L, Dherbomez M, Charles G, Letourneux Y (1998) Synthesis of 6(alpha, beta)-aminocholestanols as ergosterol biosynthesis inhibitors. Bioorg Med Chem Lett 8(24):3627–3630. https://doi.org/10.1016/s0960-894x(98)00661-1

    Article  CAS  PubMed  Google Scholar 

  54. Higa T, Tanaka J-I, Tsukitani Y, Kikuchi H (1981) Hippuristanols, cytotoxic polyoxygenated steroids from the gorgonian Isis hippuris. Chem Lett 10(11):1647–1650. https://doi.org/10.1246/cl.1981.1647

    Article  Google Scholar 

  55. Bordeleau ME, Mori A, Oberer M, Lindqvist L, Chard LS, Higa T, Belsham GJ, Wagner G, Tanaka J, Pelletier J (2006) Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat Chem Biol 2(4):213–220. https://doi.org/10.1038/nchembio776

    Article  CAS  PubMed  Google Scholar 

  56. Lindqvist L, Oberer M, Reibarkh M, Cencic R, Bordeleau ME, Vogt E, Marintchev A, Tanaka J, Fagotto F, Altmann M, Wagner G, Pelletier J (2008) Selective pharmacological targeting of a DEAD box RNA helicase. PLoS One 3(2):e1583. https://doi.org/10.1371/journal.pone.0001583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cencic R, Pelletier J (2016) Hippuristanol—a potent steroid inhibitor of eukaryotic initiation factor 4A. Translation (Austin) 4(1):e1137381. https://doi.org/10.1080/21690731.2015.1137381

    Article  Google Scholar 

  58. Northcote PT, Blunt JW, Munro MHG (1991) Pateamine: a potent cytotoxin from the New Zealand marine sponge, Mycale sp. Tetrahedron Lett 32(44):6411–6414. https://doi.org/10.1016/0040-4039(91)80182-6

    Article  CAS  Google Scholar 

  59. Bordeleau ME, Matthews J, Wojnar JM, Lindqvist L, Novac O, Jankowsky E, Sonenberg N, Northcote P, Teesdale-Spittle P, Pelletier J (2005) Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc Natl Acad Sci U S A 102(30):10460–10465. https://doi.org/10.1073/pnas.0504249102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Low WK, Dang Y, Schneider-Poetsch T, Shi Z, Choi NS, Merrick WC, Romo D, Liu JO (2005) Inhibition of eukaryotic translation initiation by the marine natural product pateamine a. Mol Cell 20(5):709–722. https://doi.org/10.1016/j.molcel.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  61. Low WK, Dang Y, Bhat S, Romo D, Liu JO (2007) Substrate-dependent targeting of eukaryotic translation initiation factor 4A by pateamine a: negation of domain-linker regulation of activity. Chem Biol 14(6):715–727. https://doi.org/10.1016/j.chembiol.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  62. Dang Y, Low WK, Xu J, Gehring NH, Dietz HC, Romo D, Liu JO (2009) Inhibition of nonsense-mediated mRNA decay by the natural product pateamine a through eukaryotic initiation factor 4AIII. J Biol Chem 284(35):23613–23621. https://doi.org/10.1074/jbc.M109.009985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bordeleau ME, Cencic R, Lindqvist L, Oberer M, Northcote P, Wagner G, Pelletier J (2006) RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine a inhibits translation initiation. Chem Biol 13(12):1287–1295. https://doi.org/10.1016/j.chembiol.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  64. Low WK, Li J, Zhu M, Kommaraju SS, Shah-Mittal J, Hull K, Liu JO, Romo D (2014) Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine a targeting eIF4A as potential anticancer agents. Bioorg Med Chem 22(1):116–125. https://doi.org/10.1016/j.bmc.2013.11.046

    Article  CAS  PubMed  Google Scholar 

  65. Lu King M, Chiang C-C, Ling H-C, Fujita E, Ochiai M, McPhail AT (1982) X-ray crystal structure of rocaglamide, a novel antileulemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun 20:1150–1151. https://doi.org/10.1039/C39820001150

    Article  Google Scholar 

  66. Pan L, Woodard JL, Lucas DM, Fuchs JR, Kinghorn AD (2014) Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat Prod Rep 31(7):924–939. https://doi.org/10.1039/c4np00006d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ohse T, Ohba S, Yamamoto T, Koyano T, Umezawa K (1996) Cyclopentabenzofuran lignan protein synthesis inhibitors from Aglaia odorata. J Nat Prod 59(7):650–652. https://doi.org/10.1021/np960346g

    Article  CAS  PubMed  Google Scholar 

  68. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, Brem B, Greger H, Lowe SW, Porco JA Jr, Pelletier J (2008) Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 118(7):2651–2660. https://doi.org/10.1172/jci34753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sadlish H, Galicia-Vazquez G, Paris CG, Aust T, Bhullar B, Chang L, Helliwell SB, Hoepfner D, Knapp B, Riedl R, Roggo S, Schuierer S, Studer C, Porco JA Jr, Pelletier J, Movva NR (2013) Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem Biol 8(7):1519–1527. https://doi.org/10.1021/cb400158t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iwasaki S, Floor SN, Ingolia NT (2016) Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature 534(7608):558–561. https://doi.org/10.1038/nature17978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, Floor SN, Fujiwara K, Mito M, Dodo K, Sodeoka M, Imataka H, Honma T, Fukuzawa K, Ito T, Ingolia NT (2019) The translation inhibitor Rocaglamide targets a bimolecular cavity between eIF4A and Polypurine RNA. Mol Cell 73(4):738–748.e739. https://doi.org/10.1016/j.molcel.2018.11.026

    Article  CAS  PubMed  Google Scholar 

  72. Linder P, Jankowsky E (2011) From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12(8):505–516. https://doi.org/10.1038/nrm3154

    Article  CAS  PubMed  Google Scholar 

  73. Tillotson J, Kedzior M, Guimaraes L, Ross AB, Peters TL, Ambrose AJ, Schmidlin CJ, Zhang DD, Costa-Lotufo LV, Rodriguez AD, Schatz JH, Chapman E (2017) ATP-competitive, marine derived natural products that target the DEAD box helicase, eIF4A. Bioorg Med Chem Lett 27(17):4082–4085. https://doi.org/10.1016/j.bmcl.2017.07.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rodriguez AD, Ramirez C, Rodriguez II (1999) Elisabatins a and B: new amphilectane-type diterpenes from the west Indian sea whip Pseudopterogorgia elisabethae. J Nat Prod 62(7):997–999. https://doi.org/10.1021/np990090p

    Article  CAS  PubMed  Google Scholar 

  75. Konig GM, Wright AD (1997) Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa. Planta Med 63(2):186–187. https://doi.org/10.1055/s-2006-957643

    Article  CAS  PubMed  Google Scholar 

  76. Banroques J, Tanner NK (2015) Bioinformatics and biochemical methods to study the structural and functional elements of DEAD-box RNA helicases. Methods Mol Biol 1259:165–181. https://doi.org/10.1007/978-1-4939-2214-7_11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique, France, by the HelicaRN [2010 BLAN 1503 01] and HeliDEAD grants [ANR-13- BSV8-0009-01] from the Agence Nationale de la Recherche, France, and by the Initiative d’Excellence program from the French State [Grant DYNAMO, ANR-11-LABX-0011-01] to NKT. This work received financial support from PHC-Utique (CMCU 17G0820) and partially from the Ministry of Higher Education and Research in Tunisia (LR11IPT04 & LR16IPT04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kyle Tanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abdelkrim, Y.Z., Banroques, J., Kyle Tanner, N. (2021). Known Inhibitors of RNA Helicases and Their Therapeutic Potential. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 2209. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0935-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0935-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0934-7

  • Online ISBN: 978-1-0716-0935-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics