Skip to main content

Three-Dimensional Confocal Analysis of Chromosome Positioning Coupled with Immunofluorescence in Mouse Sperm Nuclei

  • Protocol
  • First Online:
DNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2198))

Abstract

Male infertility is associated with several causes affecting the paternal nucleus such as DNA lesions (breaks, deletions, mutations, ...) or numerical chromosome anomalies. More recently, male infertility has also been associated with changes in the sperm epigenome, including modification in the topology of chromatin (Olszewska et al., Chromosome Research 16:875–890, 2008; Alladin et al., Syst Biol Reprod Med 59: 146–152, 2013) ref with number 1, 2. Indeed, the positioning of chromosomes in the sperm nucleus is nonrandom and defines chromosome territories (Champroux et al., Genes (Basel) 9:501, 2018) ref with number 3 whose optimal organization determines the success of embryonic development. In this context, the study of the spatial distribution of chromosomes in sperm cells could be relevant for clinical diagnosis. We describe here a in situ fluorescence hybridization (FISH) strategy coupled with a fluorescent immunocytochemistry approach followed by confocal analysis and reconstruction (2D/3D) as a powerful tool to analyze the location of chromosomes in the sperm nucleus using the mouse sperm as a model. Already, the two-dimensional (2D) analysis of FISH and immunofluorescence data reveal the location of chromosomes as well as the different markings on the spermatic nucleus. In addition, a good 3D rendering after Imaris software processing was obtained when Z-stacks of images were acquired over a defined volume (10 μm × 13 μm × 15 μm) with a sequential scanning mode to minimize bleed-through effects and avoid overlapping wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olszewska M, Wiland E, Kurpisz M (2008) Positioning of chromosome 15, 18, X and Y centromeres in sperm cells of fertile individuals and infertile patients with increased level of aneuploidy. Chromosom Res 16:875–890. https://doi.org/10.1007/s10577-008-1246-2

    Article  CAS  Google Scholar 

  2. Alladin N, Moskovtsev SI, Russell H, Kenigsberg S, Lulat AG-M, Librach CL (2013) The three-dimensional image analysis of the chromocenter in motile and immotile human sperm. Syst Biol Reprod Med 59:146–152. https://doi.org/10.3109/19396368.2013.772679

    Article  CAS  PubMed  Google Scholar 

  3. Champroux A, Damon-Soubeyrand C, Goubely C, Bravard S, Henry-Berger J, Guiton R, Saez F, Drevet J, Kocer A (2018) Nuclear integrity but not topology of mouse sperm chromosome is affected by oxidative DNA damage. Genes (Basel) 9:501. https://doi.org/10.3390/genes9100501

    Article  CAS  Google Scholar 

  4. Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A (2018) A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. Front Cell Dev Biol 6. https://doi.org/10.3389/fcell.2018.00050

  5. Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Héry P, Curtet S, Jamshidikia M, Barral S, Holota H, Bergon A, Lopez F, Guardiola P, Pernet K, Imbert J, Petosa C, Tan M, Zhao Y, Gérard M, Khochbin S (2013) Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 27:1680–1692. https://doi.org/10.1101/gad.220095.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. González-Romero R, Méndez J, Ausió J, Eirín-López JM (2008) Quickly evolving histones, nucleosome stability and chromatin folding: all about histone H2A.Bbd. Gene 413:1–7. https://doi.org/10.1016/j.gene.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  7. Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thévenon J, Catena R, Davidson I, Garin J, Khochbin S, Caron C (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294. https://doi.org/10.1083/jcb.200604141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoghoughi N, Barral S, Vargas A, Rousseaux S, Khochbin S (2017) Histone variants: essential actors in the male genome programing. J Biochem 163(2):97–103. https://doi.org/10.1093/jb/mvx079

    Article  CAS  Google Scholar 

  9. Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227. https://doi.org/10.1186/gb-2007-8-9-227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R (2014) Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839:155–168. https://doi.org/10.1016/j.bbagrm.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  11. Ward WS, Coffey DS (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44:569–574

    Article  CAS  Google Scholar 

  12. Simon L, Emery B, Carrell DT (2019) Sperm DNA fragmentation: consequences for reproduction. Adv Exp Med Biol 1166:87–105. https://doi.org/10.1007/978-3-030-21664-1_6

    Article  CAS  PubMed  Google Scholar 

  13. Drevet JR, Aitken RJ (2019) Oxidative damage to sperm DNA: attack and defense. Adv Exp Med Biol 1166:107–117. https://doi.org/10.1007/978-3-030-21664-1_7

    Article  CAS  PubMed  Google Scholar 

  14. Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J, Schoor M, Gottwald U, Habenicht U, Drevet JR, Vernet P (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119:2074–2085. https://doi.org/10.1172/JCI38940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vorilhon S, Brugnon F, Kocer A, Dollet S, Bourgne C, Berger M, Janny L, Pereira B, Aitken RJ, Moazamian A, Gharagozloo P, Drevet J, Pons-Rejraji H (2018) Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Hum Reprod 33:553–562. https://doi.org/10.1093/humrep/dey038

    Article  CAS  PubMed  Google Scholar 

  16. Noblanc A, Damon-Soubeyrand C, Karrich B, Henry-Berger J, Cadet R, Saez F, Guiton R, Janny L, Pons-Rejraji H, Alvarez JG, Drevet JR, Kocer A (2013) DNA oxidative damage in mammalian spermatozoa: where and why is the male nucleus affected? Free Radic Biol Med 65:719–723. https://doi.org/10.1016/j.freeradbiomed.2013.07.044

    Article  CAS  PubMed  Google Scholar 

  17. Kocer A, Henry-Berger J, Noblanc A, Champroux A, Pogorelcnik R, Guiton R, Janny L, Pons-Rejraji H, Saez F, Johnson GD, Krawetz SA, Alvarez JG, Aitken RJ, Drevet JR (2015) Oxidative DNA damage in mouse sperm chromosomes: size matters. Free Radic Biol Med 89:993–1002. https://doi.org/10.1016/j.freeradbiomed.2015.10.419

    Article  CAS  PubMed  Google Scholar 

  18. Xavier MJ, Nixon B, Roman SD, Scott RJ, Drevet JR, Aitken RJ (2019) Paternal impacts on development: identification of genomic regions vulnerable to oxidative DNA damage in human spermatozoa. Hum Reprod 34(10):1876–1890. https://doi.org/10.1093/humrep/dez153

    Article  CAS  PubMed  Google Scholar 

  19. Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118:1811–1820. https://doi.org/10.1242/jcs.02301

    Article  CAS  PubMed  Google Scholar 

  20. Millan NM, Lau P, Hann M, Ioannou D, Hoffman D, Barrionuevo M, Maxson W, Ory S, Tempest HG (2012) Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosom Res 20:875–887. https://doi.org/10.1007/s10577-012-9323-y

    Article  CAS  Google Scholar 

  21. Zalensky A, Zalenskaya I (2007) Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans 35:609–611. https://doi.org/10.1042/BST0350609

    Article  CAS  PubMed  Google Scholar 

  22. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  CAS  Google Scholar 

  23. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  CAS  Google Scholar 

  24. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157. https://doi.org/10.1371/journal.pbio.0030157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190. https://doi.org/10.1016/S0006-3495(00)76282-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CNRS, INSERM, and UCA for their financial support and the Auvergne Rhône Alpes Region for their contribution to this research. We would like to thank the Anipath platform (Damon-Soubeyrand C. and Bravard S.) for the technical assistance in immunofluorescence as well as the CLIC (confocal imaging facility; Vachias C.; Pouchin P. and Desset S.) of the GReD laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joël R. Drevet or Ayhan Kocer .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Three-dimensional confocal analysis (MP4 927267 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Champroux, A., Goubely, C., Henry-Berger, J., Drevet, J.R., Kocer, A. (2021). Three-Dimensional Confocal Analysis of Chromosome Positioning Coupled with Immunofluorescence in Mouse Sperm Nuclei. In: Ruzov, A., Gering, M. (eds) DNA Modifications. Methods in Molecular Biology, vol 2198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0876-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0876-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0875-3

  • Online ISBN: 978-1-0716-0876-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics