Skip to main content

Evaluating the Knockdown Activity of MALAT1 ENA Gapmers In Vitro

  • Protocol
  • First Online:
Gapmers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2176))

Abstract

Antisense oligonucleotides (ASOs) are widely used for the identification of gene functions and regulation of genes involved in different diseases for therapeutic purposes. For in vitro evaluation of the knockdown activity of gapmer ASOs, we often use lipofection or electroporation to deliver gapmer ASOs into the cells. Here, we describe a method for evaluating the knockdown activity of gapmer ASOs by a cell-free uptake mechanism, termed as gymnosis, using MALAT1 gapmer ASOs modified with 2′-O-methoxyethyl RNA (2′-MOE) or 2′-O,4′-C-ethylene–bridged nucleic acid (ENA). This method is robust because it does not involve the use of any transfection reagent and has minimal effects on cell growth. Further, we describe a convenient technique for performing one-step reverse transcription and real-time qPCR using cell lysates without RNA extraction. Data for up to 96 samples can be obtained following these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crooke ST, Witztum JL, Bennett CF et al (2018) RNA-targeted therapeutics. Cell Metab 27:714–739

    Article  CAS  Google Scholar 

  2. Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51

    Article  CAS  Google Scholar 

  3. Koizumi M (2007) True antisense oligonucleotides with modified nucleotides restricted in the N-conformation. Curr Top Med Chem 7:661–665

    Article  CAS  Google Scholar 

  4. Raal FJ, Santos RD, Blom D et al (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375:998–1006

    Article  CAS  Google Scholar 

  5. Ackermann EJ, Guo S, Booten S et al (2012) Clinical development of an antisense therapy for the treatment of transthyretin-associated polyneuropathy. Amyloid 1:43–44

    Article  Google Scholar 

  6. Gaudet D, Alexander VJ, Baker BF et al (2015) Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 373:438–447

    Article  CAS  Google Scholar 

  7. Morita K, Hasegawa C, Kaneko M et al (2002) 2’-O,4’-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg Med Chem Lett 12:73–76

    Article  CAS  Google Scholar 

  8. Morita K, Koizumi M (2018) Synthesis of ENA nucleotides and ENA oligonucleotides. Curr Protoc Nucleic Acid Chem 72:4.79.1–4.79.21

    Article  Google Scholar 

  9. Takagi M, Morita K, Nakai D et al (2004) Enhancement of the inhibitory activity of oatp antisense oligonucleotides by incorporation of 2’-O,4’-C-ethylene-bridged nucleic acids (ENA) without a loss of subtype selectivity. Biochemistry 43:4501–4510

    Article  CAS  Google Scholar 

  10. Koizumi M, Takagi-Sato M, Okuyama R et al (2006) Direct comparison of in vivo antisense activity of ENA oligonucleotides targeting PTP1B mRNA with that of 2’-O-(2-methoxy)ethyl-modified oligonucleotides. Oligonucleotides 16:253–262

    Article  CAS  Google Scholar 

  11. Yagi M, Takeshima Y, Surono A et al (2004) Chimeric RNA and 2′-O,4′-C-ethylene-bridged nucleic acids have stronger activity than phosphorothioate oligodeoxynucleotides in induction of exon 19 skipping in dystrophin mRNA. Oligonucleotides 14:33–40

    Article  CAS  Google Scholar 

  12. Lee T, Awano H, Yagi M et al (2017) 2’-O-methyl RNA/ethylene-bridged nucleic acid chimera antisense oligonucleotides to induce dystrophin exon 45 skipping. Genes (Basel) 8:E67

    Article  Google Scholar 

  13. Stein CA, Hansen JB, Lai J et al (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38:e3

    Article  CAS  Google Scholar 

  14. Hung G, Xiao X, Peralta R et al (2013) Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Nucleic Acid Ther 23:369–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Koizumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iwashita, S., Shoji, T., Koizumi, M. (2020). Evaluating the Knockdown Activity of MALAT1 ENA Gapmers In Vitro. In: Yokota, T., Maruyama, R. (eds) Gapmers. Methods in Molecular Biology, vol 2176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0771-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0771-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0770-1

  • Online ISBN: 978-1-0716-0771-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics