Skip to main content

Reverse Docking for the Identification of Molecular Targets of Anticancer Compounds

  • Protocol
  • First Online:
Cancer Cell Signaling

Abstract

Molecular docking is a useful and powerful computational method for the identification of potential interactions between small molecules and pharmacological targets. In reverse docking, the ability of one or a few compounds to bind a large dataset of proteins is evaluated in silico. This strategy is useful for identifying molecular targets of orphan bioactive compounds, proposing new molecular mechanisms, finding alternative indications of drugs, or predicting drug toxicity. Herein, we describe a detailed reverse docking protocol for the identification of potential targets for 4-hydroxycoumarin (4-HC). Our results showed that RAC1 is a target of 4-HC, which partially explains the biological activities of 4-HC on cancer cells. The strategy reported here can be easily applied to other compounds and protein datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288. https://doi.org/10.1016/0022-2836(82)90153-X

    Article  CAS  PubMed  Google Scholar 

  2. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  Google Scholar 

  3. Phatak SS, Stephan CC, Cavasotto CN (2009) High-throughput and in silico screenings in drug discovery. Expert Opin Drug Discov 4:947–959. https://doi.org/10.1517/17460440903190961

    Article  CAS  PubMed  Google Scholar 

  4. Lee A, Lee K, Kim D (2016) Using reverse docking for target identification and its applications for drug discovery. Expert Opin Drug Discov 11:707–715. https://doi.org/10.1080/17460441.2016.1190706

    Article  CAS  PubMed  Google Scholar 

  5. Velasco-Velázquez MA, Agramonte-Hevia J, Barrera D et al (2003) 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16-F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett 198:179–186. https://doi.org/10.1016/S0304-3835(03)00333-1

    Article  CAS  PubMed  Google Scholar 

  6. Velasco-Velázquez MA, Salinas-Jazmín N, Mendoza-Patiño N, Mandoki JJ (2008) Reduced paxillin expression contributes to the antimetastatic effect of 4-hydroxycoumarin on B16-F10 melanoma cells. Cancer Cell Int 8:8. https://doi.org/10.1186/1475-2867-8-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salinas-Jazmín N, De La Fuente M, Jaimez R et al (2010) Antimetastatic, antineoplastic, and toxic effects of 4-hydroxycoumarin in a preclinical mouse melanoma model. Cancer Chemother Pharmacol 65:931–940. https://doi.org/10.1007/s00280-009-1100-z

    Article  CAS  PubMed  Google Scholar 

  8. Mcgibbon RT, Beauchamp KA, Harrigan MP et al (2015) Computational tools MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109(8):1528–1532. https://doi.org/10.1016/j.bpj.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McGibbon RT, Beauchamp KA, Harrigan MP et al (2015) MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109:1528–1532. https://doi.org/10.1016/j.bpj.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eastman P, Friedrichs MS, Chodera JD et al (2013) OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J Chem Theory Comput 9(1):461–469. https://doi.org/10.1021/ct300857j

    Article  CAS  PubMed  Google Scholar 

  11. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168. https://doi.org/10.1186/1471-2105-10-168

    Article  PubMed  PubMed Central  Google Scholar 

  12. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salentin S, Schreiber S, Haupt VJ et al (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447. https://doi.org/10.1093/nar/gkv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vitanene P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–271. https://doi.org/10.1038/s41592-019-0686-2

  15. Bradley AR, Rose AS, Pavelka A et al (2017) MMTF—an efficient file format for the transmission, visualization, and analysis of macromolecular structures. PLoS Comput Biol 13:e1005575. https://doi.org/10.1371/journal.pcbi.1005575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cock PJA, Antao T, Chang JT et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423. https://doi.org/10.1093/bioinformatics/btp163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee M, Kim D (2012) Large-scale reverse docking profiles and their applications. BMC Bioinformatics 13:S6. https://doi.org/10.1186/1471-2105-13-S17-S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen F, Wang Z, Wang C et al (2017) Application of reverse docking for target prediction of marine compounds with anti-tumor activity. J Mol Graph Model 77:372–377. https://doi.org/10.1016/j.jmgm.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  19. Xu X, Huang M, Zou X (2018) Docking-based inverse virtual screening: methods, applications, and challenges. Biophys Rep 4(1):1–16. https://doi.org/10.1007/s41048-017-0045-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ruiz-Moreno was granted with a scholarship from CONACYT (number 584534) and received support from Programa de Apoyo a los Estudios de Posgrado (PAEP), UNAM 2018 and 2019. We thank the financial support provided by PAPIIT UNAM IN219719. Experiments and analyses presented in this chapter were performed using UNAM supercomputer “Miztli” through LANCAD-UNAM-DGTIC-364 resource assignation (2018 and 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Velasco-Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruiz-Moreno, A.J., Dömling, A., Velasco-Velázquez, M.A. (2021). Reverse Docking for the Identification of Molecular Targets of Anticancer Compounds. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 2174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0759-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0759-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0758-9

  • Online ISBN: 978-1-0716-0759-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics