Skip to main content

Semi-In Vivo Assay for Pollen Tube Attraction

  • Protocol
  • First Online:
Pollen and Pollen Tube Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

Abstract

In flowering plants, each pollen tube delivers two sperm cells into the ovule to complete double fertilization. During the process, pollen tubes need to be navigated into the ovule, where accurate and complex pre-ovule guidance and ovule guidance are required. In recent years, different methods have been established to study those genes involved in the regulation of pollen tube guidance. Semi-in vivo ovule targeting mimics in vivo pollen tube micropylar guidance, and the semi-in vivo ovule targeting assay has been used to investigate function of genes involved in micropylar guidance. Moreover, the ovule targeting assay is the best way to do live cell imaging, which facilitates observation of pollen tube reception, synergid cell degeneration, and semi-in vivo gamete fusion. Meanwhile, semi-in vivo pollen tube attraction assay is another useful method to directly determine whether a certain molecule has pollen tube attraction activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang J, Huang Q, Zhong S, Bleckmann A, Huang J, Guo X, Lin Q, Gu H, Dong J, Dresselhaus T, Qu L-J (2017) Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat Plants 3:17079. https://doi.org/10.1038/nplants.2017.79

    Article  PubMed Central  Google Scholar 

  2. Zhong S, Qu L-J (2019) Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. Curr Opin Plant Biol 51:7–14. https://doi.org/10.1016/j.pbi.2019.03.004

    Article  CAS  Google Scholar 

  3. Johnson MA, Harper JF, Palanivelu R (2019) A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol 70:809–837. https://doi.org/10.1146/annurev-arplant-050718-100133

    Article  CAS  Google Scholar 

  4. Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413. https://doi.org/10.1146/annurev-arplant-043014-115635

    Article  CAS  Google Scholar 

  5. Cheung AY, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393. https://doi.org/10.1016/0092-8674(95)90427-1

    Article  CAS  Google Scholar 

  6. Wu HM, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays. Cell 82:395–403. https://doi.org/10.1016/0092-8674(95)90428-X

    Article  CAS  Google Scholar 

  7. Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci U S A 100:16125–16130. https://doi.org/10.1073/pnas.2533800100

    Article  CAS  PubMed Central  Google Scholar 

  8. Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung AY, Sze H (2011) Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23:81–93. https://doi.org/10.1105/tpc.110.080499

    Article  CAS  PubMed Central  Google Scholar 

  9. Márton ML, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576. https://doi.org/10.1126/science.1104954

    Article  CAS  Google Scholar 

  10. Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361. https://doi.org/10.1038/nature07882

    Article  CAS  Google Scholar 

  11. Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449. https://doi.org/10.1371/journal.pbio.1001449

    Article  CAS  PubMed Central  Google Scholar 

  12. Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–248. https://doi.org/10.1038/nature17413

    Article  CAS  Google Scholar 

  13. Zhong S, Liu M, Wang Z, Huang Q, Hou S, Xu YC, Ge Z, Song Z, Huang J, Qiu X, Shi Y, Xiao J, Liu P, Guo YL, Dong J, Dresselhaus T, Gu H, Qu L-J (2019) Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364:eaau9564. https://doi.org/10.1126/science.aau9564

    Article  CAS  PubMed Central  Google Scholar 

  14. Higashiyama TKH, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–2032. https://doi.org/10.1105/tpc.10.12.2019

    Article  CAS  PubMed Central  Google Scholar 

  15. Willemse MTM, Plyushch TA, Reinders MC (1995) In vitro micropylar penetration of the pollen tube in the ovule of Gasteria verrucosa (Mill.) H. Duval and Lilium longiflorum Thunb.: conditions attraction and application. Plant Sci 108:201–208. https://doi.org/10.1016/0168-9452(95)04133-F

    Article  CAS  Google Scholar 

  16. Prado AM, Colaco R, Moreno N, Silva AC, Feijo JA (2008) Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. Mol Plant 1:703–714. https://doi.org/10.1093/mp/ssn034

    Article  CAS  Google Scholar 

  17. Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. https://doi.org/10.1186/1471-2229-6-7

    Article  CAS  PubMed Central  Google Scholar 

  18. Guan Y, Lu J, Xu J, McClure B, Zhang S (2014) Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiol 165:528–533. https://doi.org/10.1104/pp.113.231274

    Article  CAS  PubMed Central  Google Scholar 

  19. Iwano M, Ngo QA, Entani T, Shiba H, Nagai T, Miyawaki A, Isogai A, Grossniklaus U, Takayama S (2012) Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139:4202–4209. https://doi.org/10.1242/dev.081208

    Article  CAS  Google Scholar 

  20. Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5:3129. https://doi.org/10.1038/ncomms4129

    Article  CAS  Google Scholar 

  21. Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T (2014) Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat Commun 5:4722. https://doi.org/10.1038/ncomms5722

    Article  CAS  PubMed Central  Google Scholar 

  22. Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014) Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 5:4645. https://doi.org/10.1038/ncomms5645

    Article  CAS  PubMed Central  Google Scholar 

  23. Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39. https://doi.org/10.1046/j.1365-313X.2001.01125.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research in the Qu laboratory is supported by grants from National Natural Science Foundation of China (31830004, 31620103903 and 31621001) and by the Peking-Tsinghua Joint Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jia Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhong, S., Wang, Z., Qu, LJ. (2020). Semi-In Vivo Assay for Pollen Tube Attraction. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics