Skip to main content

Semisynthesis and Reconstitution of Nucleosomes Carrying Asymmetric Histone Modifications

  • Protocol
  • First Online:
Expressed Protein Ligation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2133))

Abstract

Nucleosomes, the basic unit of chromatin, contain a protein core of histone proteins, which are heavily posttranslationally modified. These modifications form a combinatorial language which defines the functional state of the underlying genome. As each histone type exists in two copies in a nucleosome, the modification patterns can differ between the individual histones, resulting in asymmetry and increasing combinatorial complexity. To systematically explore the regulation of chromatin regulatory enzymes (writers, erasers, or readers), chemically defined nucleosomes are required. We have developed strategies to chemically modify histones and control nucleosome assembly, thereby enabling the reconstitution of asymmetric histone modification patterns. Here, we report a detailed protocol for the modular assembly of such nucleosomes. Employing a three-segment ligation strategy for the semisynthesis of H3, coupled with the use of the protease cleavable “lnc-tag,” we provide an efficient and traceless method for the controlled semisynthesis and reconstitution of asymmetrically modified nucleosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Holde K (1989) Chromatin. In: Springer series in molecular biology. Springer, New York

    Google Scholar 

  2. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260

    Article  CAS  PubMed  Google Scholar 

  3. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  4. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torres IO, Fujimori DG (2015) Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 35:68–75. https://doi.org/10.1016/j.sbi.2015.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128(4):735–745

    Article  CAS  PubMed  Google Scholar 

  7. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120. https://doi.org/10.1038/35065132

    Article  CAS  PubMed  Google Scholar 

  8. Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13(2):115–126. https://doi.org/10.1038/nrm3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brejc K, Bian Q, Uzawa S, Wheeler BS, Anderson EC, King DS, Kranzusch PJ, Preston CG, Meyer BJ (2017) Dynamic control of X chromosome conformation and repression by a histone H4K20 demethylase. Cell 171(1):85–102.e123. https://doi.org/10.1016/j.cell.2017.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jorgensen S, Schotta G, Sorensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41(5):2797–2806. https://doi.org/10.1093/nar/gkt012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443

    Article  CAS  PubMed  Google Scholar 

  12. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  CAS  PubMed  Google Scholar 

  13. Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151(1):181–193. https://doi.org/10.1016/j.cell.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27(12):1318–1338. https://doi.org/10.1101/gad.219626.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez J, Munoz M, Vives L, Frangou CG, Groudine M, Peinado MA (2008) Bivalent domains enforce transcriptional memory of DNA methylated genes in cancer cells. Proc Natl Acad Sci U S A 105(50):19809–19814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bapat SA, Jin V, Berry N, Balch C, Sharma N, Kurrey N, Zhang S, Fang F, Lan X, Li M, Kennedy B, Bigsby RM, Huang TH, Nephew KP (2010) Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells. Epigenetics 5(8):716–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shema E, Jones D, Shoresh N, Donohue L, Ram O, Bernstein BE (2016) Single-molecule decoding of combinatorially modified nucleosomes. Science 352(6286):717–721. https://doi.org/10.1126/science.aad7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  19. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95(12):6705–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lechner CC, Agashe ND, Fierz B (2016) Traceless synthesis of asymmetrically modified bivalent nucleosomes. Angew Chem Int Ed Engl 55(8):2903–2906. https://doi.org/10.1002/anie.201510996

    Article  CAS  PubMed  Google Scholar 

  21. Guidotti N, Lechner CC, Bachmann AL, Fierz B (2019) A modular ligation strategy for asymmetric bivalent nucleosomes trimethylated at K36 and K27. Chembiochem 20(9):1124–1128. https://doi.org/10.1002/cbic.201800744

    Article  CAS  PubMed  Google Scholar 

  22. Guidotti N, Lechner CC, Fierz B (2017) Controlling the supramolecular assembly of nucleosomes asymmetrically modified on H4. Chem Commun 53(74):10267–10270. https://doi.org/10.1039/c7cc06180c

    Article  CAS  Google Scholar 

  23. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276(1):19–42

    Article  CAS  PubMed  Google Scholar 

  24. Kilic S, Bachmann AL, Bryan LC, Fierz B (2015) Multivalency governs HP1alpha association dynamics with the silent chromatin state. Nat Commun 6:7313. https://doi.org/10.1038/ncomms8313

    Article  CAS  PubMed  Google Scholar 

  25. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7(2):113–119. https://doi.org/10.1038/nchembio.501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carolin Lechner for having established some of the procedures described and Dr. Andreas Bachmann for the compounds used in the reactions. This work was supported by funding by the SystemsX program and EPFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Fierz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guidotti, N., Fierz, B. (2020). Semisynthesis and Reconstitution of Nucleosomes Carrying Asymmetric Histone Modifications. In: Vila-Perelló, M. (eds) Expressed Protein Ligation. Methods in Molecular Biology, vol 2133. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0434-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0434-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0433-5

  • Online ISBN: 978-1-0716-0434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics