Skip to main content

Plant–Insect Bioassay for Testing Arabidopsis Resistance to the Generalist Herbivore Spodoptera littoralis

  • Protocol
  • First Online:
Jasmonate in Plant Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2085))

Abstract

Jasmonates are essential engineers of plant defense responses against many pests, including herbivorous insects. Herbivory induces the production of jasmonic acid (JA) and its bioactive conjugate jasmonoyl-l-isoleucine (JA-Ile), which then triggers a large transcriptional reprogramming to promote plant acclimation. The contribution of the JA pathway, including its components and regulators, to defense responses against insect herbivory can be evaluated by conducting bioassays with a wide range of host plants and insect pests. Here, we describe a detailed and reproducible protocol for testing feeding behavior of the generalist herbivore Spodoptera littoralis on the model plant Arabidopsis thaliana and hence infer the contribution of JA-mediated plant defense responses to a chewing insect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146(3):852–858. https://doi.org/10.1104/pp.107.112177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5(5):344–350. https://doi.org/10.1038/nchembio.161

    Article  CAS  PubMed  Google Scholar 

  3. Koo AJ, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70(13–14):1571–1580. https://doi.org/10.1016/j.phytochem.2009.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98(3):995–1002

    Article  CAS  Google Scholar 

  5. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 87(19):7713–7716

    Article  CAS  Google Scholar 

  6. Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Functional Ecology 25(2):420–432. https://doi.org/10.1111/j.1365-2435.2010.01796.x

    Article  Google Scholar 

  7. Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist 156(2):145–169. https://doi.org/10.1046/j.1469-8137.2002.00519.x

    Article  CAS  Google Scholar 

  8. Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Annu Rev Entomol 61:373–394. https://doi.org/10.1146/annurev-ento-010715-023851

    Article  CAS  PubMed  Google Scholar 

  9. Verhage A, Vlaardingerbroek I, Raaymakers C, Van Dam NM, Dicke M, Van Wees SC, Pieterse CM (2011) Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Sci 2:47. https://doi.org/10.3389/fpls.2011.00047

    Article  PubMed  PubMed Central  Google Scholar 

  10. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. https://doi.org/10.1146/annurev.arplant.59.032607.092825

    Article  CAS  PubMed  Google Scholar 

  11. McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A 94(10):5473–5477

    Article  CAS  Google Scholar 

  12. Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125(2):1074–1085

    Article  CAS  Google Scholar 

  13. Stotz HU, Koch T, Biedermann A, Weniger K, Boland W, Mitchell-Olds T (2002) Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214(4):648–652

    Article  CAS  Google Scholar 

  14. Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19(7):2225–2245. https://doi.org/10.1105/tpc.106.048017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305(5684):665–668. https://doi.org/10.1126/science.1096931

    Article  CAS  PubMed  Google Scholar 

  16. Abe H, Onnishi J, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2008) Arabidopsis-thrips system for analysis of plant response to insect feeding. Plant Signal Behav 3(7):446–447

    Article  Google Scholar 

  17. Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gomez-Cadenas A, Van de Peer Y, Grbic M, Clark RM, Van Leeuwen T, Grbic V (2014) Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. Plant Physiol 164(1):384–399. https://doi.org/10.1104/pp.113.231555

    Article  CAS  PubMed  Google Scholar 

  18. Knolhoff LM, Heckel DG (2014) Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu Rev Entomol 59:263–278. https://doi.org/10.1146/annurev-ento-011613-161945

    Article  CAS  PubMed  Google Scholar 

  19. Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17(5):293–302. https://doi.org/10.1016/j.tplants.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  20. Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34(2):132–143. https://doi.org/10.1007/s10886-008-9429-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161(1):325–332

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175(1):176–184. https://doi.org/10.1111/j.1469-8137.2007.02090.x

    Article  PubMed  Google Scholar 

  23. Health EPP (2015) Scientific Opinion on the pest categorisation of Spodoptera littoralis. EFSA J 13:1. https://doi.org/10.2903/j.efsa.2015.3987

    Article  Google Scholar 

  24. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19(8):2470–2483. https://doi.org/10.1105/tpc.107.050708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gasperini D, Chetelat A, Acosta IF, Goossens J, Pauwels L, Goossens A, Dreos R, Alfonso E, Farmer EE (2015) Multilayered organization of jasmonate signalling in the regulation of root growth. PLoS Genetics 11(6):e1005300. https://doi.org/10.1371/journal.pgen.1005300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, Zebelo SA, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura G (2010) Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 10:97. https://doi.org/10.1186/1471-2229-10-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khan GA, Vogiatzaki E, Glauser G, Poirier Y (2016) Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol 171(1):632–644. https://doi.org/10.1104/pp.16.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16(11):3132–3147. https://doi.org/10.1105/tpc.104.026120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scholz SS, Vadassery J, Heyer M, Reichelt M, Bender KW, Snedden WA, Boland W, Mithofer A (2014) Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Mol Plant 7(12):1712–1726. https://doi.org/10.1093/mp/ssu102

    Article  CAS  PubMed  Google Scholar 

  30. Schweizer F, Fernandez-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25(8):3117–3132. https://doi.org/10.1105/tpc.113.115139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31(1):1–12

    Article  Google Scholar 

  32. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to O. Kindler and R. Reist (Stein, CH) for providing S. littoralis eggs; to E. Warkus (Halle, DE) for manufacturing the custom-made bioassay cages; and to the Deutsche Forschungsgemeinschaft (grant GA 2419/2-1 to D.G.) and IPB–Leibniz Association for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Gasperini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mielke, S., Gasperini, D. (2020). Plant–Insect Bioassay for Testing Arabidopsis Resistance to the Generalist Herbivore Spodoptera littoralis. In: Champion, A., Laplaze, L. (eds) Jasmonate in Plant Biology. Methods in Molecular Biology, vol 2085. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0142-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0142-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0141-9

  • Online ISBN: 978-1-0716-0142-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics