Skip to main content

Lipidomics by HILIC-Ion Mobility-Mass Spectrometry

  • Protocol
  • First Online:
Ion Mobility-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2084))

Abstract

Lipidomics is a rapidly growing field that enables the characterization of the entire lipidome in cells, tissues, or an organism. Changes in lipid metabolism and homeostasis caused by different disease states or drug treatments can be probed by lipidomics experiments, which can aid our understanding of normal physiology and disease pathology at the molecular level. While current technologies using liquid chromatography coupled with high-resolution mass spectrometry have greatly increased coverage of the lipidome, there are still limitations in resolving the large number of lipid species with similar masses in a narrow mass window. We recently reported that two orthogonal separation techniques, hydrophilic interaction liquid chromatography (HILIC) and ion mobility (IM), enhance the resolution of lipid species based on headgroup polarity and gas-phase size and shape, respectively, of various classes of glycerolipids, glycolipids, phospholipids, and sphingolipids. Here we describe the application of our HILIC-IM-MS lipidomics protocol to the analysis of lipid extracts derived from either tissues or cells, to identify significant changes in the lipidome in response to an internal or external stimulus, such as exposure to environmental chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jurowski K, Kochan K, Walczak J, Baranska M, Piekoszewski W, Buszewski B (2017) Analytical techniques in lipidomics: state of the art. Crit Rev Anal Chem 47:418–437

    Article  CAS  Google Scholar 

  2. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    Article  CAS  Google Scholar 

  3. Rustam YH, Reid GE (2018) Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal Chem 90:374–397

    Article  CAS  Google Scholar 

  4. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  CAS  Google Scholar 

  5. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–S14

    Article  Google Scholar 

  6. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  CAS  Google Scholar 

  7. Schwudke D, Liebisch G, Herzog R, Schmitz G, Shevchenko A (2007) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol 433:175–191

    Article  CAS  Google Scholar 

  8. Quehenberger O et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305

    Article  CAS  Google Scholar 

  9. Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224

    Article  CAS  Google Scholar 

  10. Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA (2007) Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol 432:21–57

    Article  CAS  Google Scholar 

  11. Baker PR, Armando AM, Campbell JL, Quehenberger O, Dennis EA (2014) Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J Lipid Res 55:2432–2442. https://doi.org/10.1194/jlr.D051581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cifkova E, Holcapek M, Lisa M, Ovcacikova M, Lycka A, Lynen F, Sandra P (2012) Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal Chem 84:10064–10070

    Article  CAS  Google Scholar 

  13. Hinz C, Liggi S, Griffin JL (2018) The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr Opin Chem Biol 42:42–50

    Article  CAS  Google Scholar 

  14. Hines K, Herron J, Xu L (2017) Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. J Lipid Res 58:809–819

    Article  CAS  Google Scholar 

  15. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, Xu L (2017) Characterization of the mechanisms of daptomycin resistance among gram-positive bacterial pathogens by multidimensional lipidomics. mSphere 2:e00492–e00417

    Article  Google Scholar 

  16. Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811:935–945

    Article  CAS  Google Scholar 

  17. Fenn LS, McLean JA (2008) Biomolecular structural separations by ion mobility-mass spectrometry. Anal Bioanal Chem 391:905–909

    Article  CAS  Google Scholar 

  18. McLean JA, Ruotolo BT, Gillig KJ, Russell DH (2005) Ion mobility-mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240:301–315

    Article  CAS  Google Scholar 

  19. Mason EA, Schamp HW Jr (1958) Mobility of gaseous ions in weak electric fields. Ann Phys 4:233–270

    Article  CAS  Google Scholar 

  20. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York, NY

    Book  Google Scholar 

  21. Hines KM, May JC, McLean JA, Xu L (2016) Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem 88:7329–7336

    Article  CAS  Google Scholar 

  22. Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152

    Article  CAS  Google Scholar 

  23. Forsythe JG, Petrov AS, Walker CA, Allen SJ, Pellissier JS, Bush MF, Hud NV, Fernandez FM (2015) Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst 140:6853–6861

    Article  CAS  Google Scholar 

  24. Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA (2009) Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394:235–244

    Article  CAS  Google Scholar 

  25. May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E, Overney G, Imatani K, Stafford GC, Fjeldsted JC, McLean JA (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86:2107–2116

    Article  CAS  Google Scholar 

  26. Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW, Menikarachchi L, Lai S, Walsh C, Moseley A, Plumb RS, Grant DF, Palsson BO, Langridge J, Geromanos S, Astarita G (2015) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87:1137–1144

    Article  CAS  Google Scholar 

  27. Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES, Wagoner J, Polyak SJ, Metz TO, Dey SK, Smith RD, Burnum-Johnson KE, Baker ES (2016) Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:1649–1659

    Article  CAS  Google Scholar 

  28. Zhou Z, Tu J, Xiong X, Shen X, Zhu ZJ (2017) LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal Chem 89:9559–9566

    Article  CAS  Google Scholar 

  29. Zhou Z, Shen X, Chen X, Tu J, Xiong X, Zhu ZJ (2019) LipidIMMS analyzer: integrating multi-dimensional information to support lipid identification in ion mobility- mass spectrometry based lipidomics. Bioinformatics 35:698–700. https://doi.org/10.1093/bioinformatics/bty1661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institutes of Health (R00HD073270 and R01HD092659). A.L. is an appointed trainee of the Pharmacological Sciences Training Program funded by the National Institutes of Health (T32GM007750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, A., Hines, K.M., Xu, L. (2020). Lipidomics by HILIC-Ion Mobility-Mass Spectrometry. In: Paglia, G., Astarita, G. (eds) Ion Mobility-Mass Spectrometry . Methods in Molecular Biology, vol 2084. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0030-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0030-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0029-0

  • Online ISBN: 978-1-0716-0030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics