Skip to main content

Receptor Signaling in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

Research on the molecular basis of pulmonary arterial hypertension (PAH) caused by perturbations in receptor signaling in vascular endothelial and smooth muscle cells is beginning to yield novel approaches to future therapies for this disease. This chapter focuses on recent findings of the role of two different receptors – NOTCH3 and bone morphogenetic protein (BMP) receptor (BMPR) type 2 (BMPR-2) – in regulating vascular smooth muscle cell and endothelial cell behavior and phenotype, and discusses the potential role of ligand–receptor signaling in the genesis of PAH. Changes in the structure, function, and integrity of blood vessels are necessary for the pathogenesis of many diseases, including PAH. This disease is characterized by structural remodeling of small pulmonary arteries and arterioles, due to vessel thickening and luminal occlusion by vascular smooth muscle cell and endothelial proliferation. The vasculopathy seen in PAH is progressive, diffuse, and eventually results in obliteration of the distal pulmonary arterial tree. From a clinical point of view, PAH manifests itself as sustained elevation in pulmonary arterial pressures and pulmonary vascular resistance, leading to right-sided heart failure and death. Although several stimuli and conditions, such as hypoxia, fenfluoramine ingestion, collagen vascular disease, portal hypertension, and intracardiac left-to-right shunting, are associated with this disease [3], the exact mechanism of how the lung remodels its vascular architecture in the pulmonary artery bed in PAH is not known. Increasing evidence suggests that two types of receptors, NOTCH and BMPR, may each play an important role in the genesis of this disease. This emerging body of literature lays the groundwork for designing therapy based on the basic biology of the pulmonary vascular wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyduk A, Croft JB, Ayala C, Zheng K, Zheng ZJ, Mensah GA et al (1980–2002) Pulmonary hypertension surveillance – United States. http://www.cdc.gov.mmwr/preview/mmwrhtml/ss5405a1.htm

  2. Yuan JX, Rubin LJ (2005) Pathogenesis of pulmonary arterial hypertension: the need for multiple hits. Circulation 111:534–538

    Article  PubMed  Google Scholar 

  3. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR et al (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension. A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619

    Article  PubMed  Google Scholar 

  4. Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524

    Article  PubMed  CAS  Google Scholar 

  5. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  PubMed  CAS  Google Scholar 

  6. Fleming RJ (1998) Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol 9:599–607

    Article  PubMed  CAS  Google Scholar 

  7. Lubman OY, Korolev SV, Kopan R (2004) Anchoring notch genetics and biochemistry; structural analysis of the ankyrin domain sheds light on existing data. Mol Cell 13:619–626

    Article  PubMed  CAS  Google Scholar 

  8. Lissemore JL, Starmer WT (1999) Phylogenetic analysis of vertebrate and invertebratae Delta/Serrate/LAG-2 (DSL) proteins. Mol Phylogenet Evol 11:308–319

    Article  PubMed  CAS  Google Scholar 

  9. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965–973

    Article  PubMed  CAS  Google Scholar 

  10. High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA (2008) Endothelial expression of the Notch ligand Jagged 1 is required for vascular smooth muscle development. Proc Natl Acad Sci USA 105:1955–1959

    Article  PubMed  CAS  Google Scholar 

  11. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318

    PubMed  CAS  Google Scholar 

  12. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134:2709–2718

    Article  PubMed  CAS  Google Scholar 

  13. Morrow D, Scheller A, Birney YA et al (2005) Notch-mediated CBF-1/RBP-Jkappa-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289:C1188–C1196

    Article  PubMed  CAS  Google Scholar 

  14. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    Article  PubMed  CAS  Google Scholar 

  15. de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ et al (1997) Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124:1139–1148

    PubMed  Google Scholar 

  16. Kopan R, Nye JS, Weintraub H (1994) The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120:2385–2396

    PubMed  CAS  Google Scholar 

  17. Proweller A, Pear WS, Parmacek MS (2005) Notch signaling represses myocardin-induced smooth muscle differentiation. J Biol Chem 280:8994–9004

    Article  PubMed  CAS  Google Scholar 

  18. Havrda MC, Johnson MJ, O’Neill CF, Liaw L (2006) A novel mechanism of transcriptional repression of p27kip1 through Notch/HRT2 signaling in vascular smooth muscle cells. Thromb Haemost 96:361–370

    PubMed  CAS  Google Scholar 

  19. Wang W, Prince CZ, Hu X, Pollman MJ (2003) HRT1 modulates vascular smooth muscle cell proliferation and apoptosis. Biochem Biophys Res Commun 308:596–601

    Article  PubMed  CAS  Google Scholar 

  20. Jin S, Hansson EM, Tikka S, Lanner F, Sahlgren C, Farnebro F et al (2008) Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells. Circ Res 102:1448–1450

    Article  Google Scholar 

  21. Krebs LT, Xue Y, Norton CR, Sundberg JP, Beatus P, Lendahl U et al (2003) Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 37:139–143

    Article  PubMed  CAS  Google Scholar 

  22. Kitamoto T, Takahashi K, Takimoto H, Tomizuka K, Hayasaka M, Tabira T et al (2005) Functional redundancy of the Notch gene family during mouse embryogenesis: analysis of Notch gene expression in Notch3-deficient mice. Biochem Biophys Res Commun 331:1154–1162

    Article  PubMed  CAS  Google Scholar 

  23. Domenga V, Fardoux P, Lacombe R, Monet M, Maciazek J, Krebs LT et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730–2735

    Article  PubMed  CAS  Google Scholar 

  24. Van der Loop FT, Gabbiani G, Kohnen G, Ramaekers FC, van Eys GJ (1997) Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arterioscler Thromb Vasc Biol 17:665–671

    PubMed  Google Scholar 

  25. Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164

    Article  PubMed  CAS  Google Scholar 

  26. Campos AH, Wang W, Pollman MJ, Gibbons GH (2002) Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation. Circ Res 91:999–1006

    Article  PubMed  CAS  Google Scholar 

  27. Sweeney C, Morrow D, Birney YA, Coyle S, Hennessy C, Scheller A et al (2004) Notch1 and 3 receptor signaling modulates vascular smooth muscle growth, apoptosis, and migration via a CBF-1/RBP-Jκ dependent pathway. FASEB J 18:1421–1423

    PubMed  CAS  Google Scholar 

  28. Sakata Y, Xiang F, Chen Z, Kiriyama Y, Kamei CN, Simon DI et al (2004) Transcription factor CHF1/Hey2 regulates neointimal formation in vivo and vascular smooth muscle proliferation and migration in vitro. Arterioscler Throm Vasc Biol 24:2069–2074

    Article  CAS  Google Scholar 

  29. Wang T, Baron M, Trump D (2008) An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol 96:499–509

    Article  PubMed  CAS  Google Scholar 

  30. Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N et al (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597–605

    Article  PubMed  CAS  Google Scholar 

  31. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A et al (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16:235–242

    Article  PubMed  CAS  Google Scholar 

  32. Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P et al (2009) Notch3 signaling prevents the development of pulmonary arterial hypertension. Nat Med 15(11):1289–97

    Article  PubMed  CAS  Google Scholar 

  33. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P et al (2007) Dll4 signaling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    Article  PubMed  Google Scholar 

  34. Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signal cross-talk. Cytokine Growth Factor Rev 16:251–263

    Article  PubMed  CAS  Google Scholar 

  35. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW et al (2008) BMP type 1 receptor inhibition reduces heterotopic ossification. Nat Med 14:1363–1369

    Article  PubMed  CAS  Google Scholar 

  36. Kawabata M, Imamura T, Miyazono K (1998) Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9:49–61

    Article  PubMed  CAS  Google Scholar 

  37. Massague J, Chen Y-G (2000) Controlling TGF-B signaling. Genes Dev 14:627–644

    PubMed  CAS  Google Scholar 

  38. Yu PB, Deng DY, Beppu H, Hong CC, Lai C, Hoyng SA et al (2008) Bone morphogenetic protein (BMP) type II receptor is required for BMP-mediated growth arrest and differentiation in pulmonary artery smooth muscle cells. J Biol Chem 283:3877–3888

    Article  PubMed  CAS  Google Scholar 

  39. Rosenweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P et al (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A 92:7632–7636

    Article  Google Scholar 

  40. Upton PD, Morrell NW (2009) TGF-β and BMPR-II pharmacology – implications for pulmonary vascular diseases. Curr Opin Pharmacol 9:274–280

    Article  PubMed  CAS  Google Scholar 

  41. Upton PD, Davies RJ, Trembath RC, Morrell NW (2009) Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem 284:15794–15804

    Article  PubMed  CAS  Google Scholar 

  42. Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Peterson GM et al (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28:184–187

    Article  PubMed  CAS  Google Scholar 

  43. Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Suring K et al (2003) Mutations in bone morphogenetic protein 1B cause brachydactyly type A2. Proc Natl Acad Sci USA 100:12277–12282

    Article  PubMed  CAS  Google Scholar 

  44. Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F, Yamaguchi A et al (1996) Identification of type I and type II serine/threonine kinase receptors for growth/differentiation-5. J Biol Chem 271:21345–21352

    Article  PubMed  CAS  Google Scholar 

  45. Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N et al (2000) Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103:1085–1097

    Article  PubMed  CAS  Google Scholar 

  46. Massague J, Blain SW, Lo RS (2000) TGF beta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  47. Nohe A, Keating E, Knaus P, Petersen NO (2004) Signal transduction of bone morphogenetic protein receptors. Cell Signal 16:291–299

    Article  PubMed  CAS  Google Scholar 

  48. Massague J (2003) Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 17:2993–2997

    Article  PubMed  CAS  Google Scholar 

  49. Sun X-H, Copeland NG, Jenkins NA, Baltimore D (1991) Id proteins Id1 an Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 11:5603–5611

    PubMed  CAS  Google Scholar 

  50. Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13:410–418

    Article  PubMed  CAS  Google Scholar 

  51. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    Article  PubMed  CAS  Google Scholar 

  52. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  PubMed  CAS  Google Scholar 

  53. Yokoto Y, Mori S (2002) Role of Id family proteins in growth control. J Cell Physiol 190:21–28

    Article  Google Scholar 

  54. O’Toole PJ, Inoue T, Emerson L, Morrison IE, Mackie AT, Cherry RJ, Norton JD (2003) Id proteins negatively regulate basic helix-loop-helix transcription factor function by disrupting subnuclear compartmentalization. J Biol Chem 278:45770–45776

    Article  PubMed  Google Scholar 

  55. Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113:3897–3905

    PubMed  CAS  Google Scholar 

  56. Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA et al (2004) Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem 279:32941–32949

    Article  PubMed  CAS  Google Scholar 

  57. Lasorella A, Noseda M, Beyna M, Iavarone A (2000) Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407:592–598

    Article  PubMed  CAS  Google Scholar 

  58. Inoue T, Shoji W, Obinata M (1999) MIDA1, an ID-associating protein, has two distinct DNA binding activities that are converted by the association with Id1: a novel function of Id protein. Biochem Biophys Res Commun 266:147–151

    Article  PubMed  CAS  Google Scholar 

  59. Moldes M, Boizard M, Liepvre XL, Feve B, Dugail I, Pairault J (1999) Function antagonism between inhibitor of DNA binding (Id) and adipocyte determination and differentiation factor 1/sterol regulatory element-binding protein-1c (ADD1/SREBP-1c) trans-factors for the regulation of fatty acid synthase promoter in adipocytes. Biochem J 344:873–880

    Article  PubMed  CAS  Google Scholar 

  60. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, Loyd JE et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet 26:81–84

    Article  PubMed  CAS  Google Scholar 

  61. Loyd JE, Butler MG, Foroud TM, Conneally PM, Phillips JA, Newman JH (1995) Genetic anticipation and abnormal gender ratio at birth in familial primary pulmonary hypertension. Am J Respir Crit Care Med 152:93–97

    PubMed  CAS  Google Scholar 

  62. Thomson J, Machado R, Pauciulo M, Morgan N, Humbert M, Elliot G et al (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J Med Genet 37:741–745

    Article  PubMed  CAS  Google Scholar 

  63. Rosenweig EB, Morse JH, Knowles JA, Chada KK, Khan AM, Roberts KE et al (2008) Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension. J Heart Lung Transplant 27:668–674

    Article  Google Scholar 

  64. Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE et al (2009) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54:S32–S42

    Article  PubMed  CAS  Google Scholar 

  65. Rudarakanchana N, Flanagan JA, Chen H, Upton PD, Machado RD, Patel D et al (2002) Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension. Hum Mol Genet 11:1517–1525

    Article  PubMed  CAS  Google Scholar 

  66. Nishihara A, Watabe T, Imamura T, Miyazono K (2002) Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension. Mol Biol Cell 13:3055–3063

    Article  PubMed  CAS  Google Scholar 

  67. Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC et al (2006) Mutations of the TGF-β type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 27:121–132

    Article  PubMed  CAS  Google Scholar 

  68. Aldred M, Vijayakrishnan J, James V, Soubrier F, Gomez-Sanchez M, Martensson G et al (2006) BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum Mutat 27:212–213

    Article  PubMed  Google Scholar 

  69. Cogan JD, Vnenak-Jones CL, Phillips JA, Land KB, Wheeler L, Robbins IM et al (2005) Gross BMPR2 gene rearrangements constitute a new cause for primary pulmonary hypertension. Genet Med 7:169–174

    Article  PubMed  CAS  Google Scholar 

  70. Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T et al (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    Article  PubMed  CAS  Google Scholar 

  71. Kaneko K, Li X, Zhang X, Lamberti JJ, Jamieson SW, Thistlethwaite PA (2008) Endothelial expression of bone morphogenetic protein receptor type 1a is required for atrioventricular value formation. Ann Thorac Surg 85:2090–2098

    Article  PubMed  CAS  Google Scholar 

  72. Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X, Rudarakanchana N et al (2006) Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 98:818–827

    Article  PubMed  CAS  Google Scholar 

  73. Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM et al (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247

    Article  PubMed  CAS  Google Scholar 

  74. Song Y, Jones JE, Beppu H, Keaney JF, Loscalzo J, Zhang YY (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553–562

    Article  PubMed  CAS  Google Scholar 

  75. Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R et al (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110:1502–1510

    Article  PubMed  CAS  Google Scholar 

  76. Delot EC, Bahamonde ME, Zhao M, Lyons KM (2003) BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130:209–220

    Article  PubMed  CAS  Google Scholar 

  77. Hong K, Lee JL, Lee E, Park SO, Beppu CH, Li E et al (2008) Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722–730

    Article  PubMed  CAS  Google Scholar 

  78. Reynolds AM, Xia W, Holmes MD, Hodge SJ, Danilov S, Curiel DT et al (2007) Bone morphogenetic protein type 2 receptor therapy attenuates hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 292:L1182–1192

    Article  PubMed  CAS  Google Scholar 

  79. West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J et al (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114

    Article  PubMed  CAS  Google Scholar 

  80. Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC et al (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105:1672–1678

    Article  PubMed  CAS  Google Scholar 

  81. Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK et al (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063

    Article  PubMed  CAS  Google Scholar 

  82. Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL et al (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509

    Article  PubMed  CAS  Google Scholar 

  83. Morrell N, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR et al (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54:S20–S31

    Article  PubMed  CAS  Google Scholar 

  84. Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA et al (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L740–L754

    PubMed  CAS  Google Scholar 

  85. Valdimarsdottir G, Goumans MJ, Rosendahl A, Brugman M, Itoh S, Lebrin F et al (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106:2263–2270

    Article  PubMed  CAS  Google Scholar 

  86. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L et al (2006) Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98:209–217

    Article  PubMed  CAS  Google Scholar 

  87. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim D et al (2009) Altered bone morphogenetic protein and transforming growth factor-β signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 119:566–576

    Article  PubMed  CAS  Google Scholar 

  88. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F et al (2003) BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  PubMed  CAS  Google Scholar 

  89. Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK et al (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary ­hypertension to transforming growth factor-β1 and bone morphogenetic proteins. Circulation 104:790–795

    Article  PubMed  CAS  Google Scholar 

  90. Richter A, Yeager ME, Zaiman A, Cool CD, Voelkel NF, Tuder RM (2004) Impaired transforming growth factor-β signaling in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 170:1340–1348

    Article  PubMed  Google Scholar 

  91. Kluppel M, Wrana JL (2005) Turning it up a Notch: cross-talk between TGFβ and Notch signaling. Bioessays 27:115–118

    Article  PubMed  Google Scholar 

  92. Herpin A, Cunningham C (2007) Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes. FEBS J 274:2977–2985

    Article  PubMed  CAS  Google Scholar 

  93. Itoh F, Itoh S, Goumans M, Valdimarsdottir G, Iso T, Dotto GP et al (2004) Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J 23:541–551

    Article  PubMed  CAS  Google Scholar 

  94. Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U et al (2003) Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 163:723–728

    Article  PubMed  CAS  Google Scholar 

  95. Bai G, Sheng N, Xie Z, Bain W, Yokota Y, Benezra R et al (2007) Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev Cell 13:283–297

    Article  PubMed  CAS  Google Scholar 

  96. Dahlqvist C, Blokzijl A, Chapman G, Falk A, Dannaeus K, Ibanez CF et al (2003) Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130:6089–6099

    Article  PubMed  CAS  Google Scholar 

  97. Kennard S, Liu H, Lilly B (2008) Transforming growth factor-β (TGF-β1) down-regulates Notch3 in fibroblasts to promote smooth muscle gene expression. J Biol Chem 283:1324–1333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Thistlethwaite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thistlethwaite, P.A., Leathers, R.N., Li, X., Zhang, X. (2011). Receptor Signaling in Pulmonary Arterial Hypertension. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_57

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics