Skip to main content

Technologies for the Global Discovery and Analysis of Alternative Splicing

  • Chapter
Alternative Splicing in the Postgenomic Era

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 623))

Abstract

During the past ∼20 years, studies on alternative splicing (AS) have largely been directed at the identification and characterization of factors and mechanisms responsible for the control of splice site selection, using model substrates and on a case by case basis. These studies have provided a wealth of information on the factors and interactions that control formation of the spliceosome. However, relatively little is known about the global regulatory properties of AS. Important questions that need to be addressed are: which exons are alternatively spliced and under which cellular contexts, what are the functional roles of AS events in different cellular contexts, and how are AS events controlled and coordinated with each other and with other levels of gene regulation to achieve cell- and developmentspecific functions. During the past several years, new technologies and experimental strategies have provided insight into these questions. For example, custom microarrays and data analysis took are playing a prominent role in the discovery and analysis of splicing regulation. Moreover, several non-microarray-based technologies are emerging that will likely further fuel progress in this area. This review focuses on recent advances made in the development and application of high-throughput methods to study AS.

Co-First Authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shoemaker DD, Schadt EE, Armour CD et al. Experimental annotation of the human genome using microarray technology, Nature 2001; 409(6822):922–927.

    Article  CAS  PubMed  Google Scholar 

  2. Hu GK, Madore SJ, Moldover B et al. Predicting splice variant from DNA chip expression data. Genome Res 2001; 11(7):1237–1245.

    Article  CAS  PubMed  Google Scholar 

  3. Kapranov P, Cawley SE, Drenkow J et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 2002: 296(5569):916–919.

    Article  CAS  PubMed  Google Scholar 

  4. Hughes TR, Mao M, Jones AR et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001; 19(4):342–347.

    Article  CAS  PubMed  Google Scholar 

  5. Kampa D, Cheng J, Kapranov P et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 2004; 14(3):331–342.

    Article  CAS  PubMed  Google Scholar 

  6. Stole V, Gauhar Z, Mason C et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 2004; 306(5696):655–660.

    Article  Google Scholar 

  7. McIntyre LM, Bono LM, Genissel A et al. Sex-specific expression of alternative transcripts in Drosophila. Genome Biol 2006; 7(8);R79.

    Article  PubMed  Google Scholar 

  8. Ner-Gaon H, Fluhr R. Whole-genome microarray in Arabidopsis facilitates global analysis of retained introns. DNA Res 2006; 13(3):111–121.

    Article  CAS  PubMed  Google Scholar 

  9. Castle J, Garrett-Engele P, Armour CD et al. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing. Genome Biol 2003; 4(10):R66.

    Article  PubMed  Google Scholar 

  10. Clark TA, Sugnet CW, Ares Jr M. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 2002; 296(5569):907–910.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson JM, Castle J, Garrett-Engele P et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302(5653):2141–2144.

    Article  CAS  PubMed  Google Scholar 

  12. Yeakley JM, Fan JB, Doucet D et al. Profiling alternative splicing on fiber-optic arrays. Nat Biotechnol 2002; 20(4):353–358.

    Article  CAS  PubMed  Google Scholar 

  13. Li HR, Wang-Rodriguez J, Nair TM et al. Two-dimensional transcriptome profiling: identification of messenger RNA isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens. Cancer Res 2006; 66(8):4079–4088.

    Article  CAS  PubMed  Google Scholar 

  14. Bingham J, Sudarsanam S, Srinivasan S. Profiling human phosphodiesterase genes and spike isoforms. Biochem Biophys Res Commun 2006; 350(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  15. Blanchette M, Green RE, Brenner SE et al. Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev 2005; 19(11):1306–1314.

    Article  CAS  PubMed  Google Scholar 

  16. Fehlbaum P, Guihal C, Bracco L et al. A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res 2005; 33(5):e47.

    Article  PubMed  Google Scholar 

  17. Le K, Mitsouras K, Roy M et al. Detecting tissue-specific regulation of alternative splicing as a qualitative change in microarray data. Nucleic Acids Res 2004; 32(22):e180.

    Article  PubMed  Google Scholar 

  18. Li C, Kato M, Shiue L et al. Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays. Cancer Res 2006; 66(4):1990–1999.

    Article  CAS  PubMed  Google Scholar 

  19. Nagao K, logawa N, Fujii K et al. Detecting tissue-specific alternative splicing and disease-associated aberrant splicing of the PTCH gene with exon junction microarrays. Hum Mol Genet 2005; 14(22):3379–3388.

    Article  CAS  PubMed  Google Scholar 

  20. Pan Q, Saltzman AL, Kim YK et al. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev 2006; 20(2):153–158.

    Article  CAS  PubMed  Google Scholar 

  21. Pan Q Shai O, Misquitta C et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell 2004; 16(6):929–941.

    Article  CAS  PubMed  Google Scholar 

  22. Relogio A, Ben-Dov C, Baum M et al. Alternative splicing microarrays reveal functional expression of neuron-specific regulators in Hodgkin lymphoma cells. J Biol Chem 2005; 280(6):4779–4784.

    Article  CAS  PubMed  Google Scholar 

  23. Sugnet CW, Srinivasan K, Clark TA et al. Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays. PLoS Comput Biol 2006; 2(1):e4.

    Article  PubMed  Google Scholar 

  24. Ule J, Ule A, Spencer J et al. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005; 37(8):844–852.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Hubbell E, Hu JS et al. Gene structure-based splice variant deconvolution using a microarray platform. Bioinformatics 2003; 19(Suppl 1):i315–i322.

    Article  PubMed  Google Scholar 

  26. Shai O, Morris QD, Blencowe BJ et al. Inferring global levels of alternative splicing isoforms using a generative model of microarray data. Bioinformatics 2006; 22(5):606–613.

    Article  CAS  PubMed  Google Scholar 

  27. Ip JY, Tong A, Pan Q et al. Global analysis of alternative splicing during T-cell activation. RNA 2007; 13:563–572.

    Article  CAS  PubMed  Google Scholar 

  28. Fagnani M, Barash Y, Ip JY et al. Functional coordination of alternative splicing in the mammalian central nervous system. Genome Biol 2007; 8;R108.

    Article  PubMed  Google Scholar 

  29. Calarco JA, Xing Y, Caceres M et al. Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev 2007; in press.

    Google Scholar 

  30. Cuperlovic-Culf M, Belacel N, Culf AS et al. Data analysis of alternative splicing microarrays. Drug Discov Today 2006; 11(21–22):983–990.

    Article  CAS  PubMed  Google Scholar 

  31. Huang X, Li J, Lu L et al. Novel development-related alternative splices in human testis identified by cDNA microarrays. J Androl 2005; 26(2):189–196.

    PubMed  Google Scholar 

  32. MacDougall C, Harbison D, Bownes M. The developmental consequences of alternate splicing in sex determination and differentiation in Drosophila. Dev Biol 1995; 172(2):353–376.

    Article  CAS  PubMed  Google Scholar 

  33. Forch P, Valcarcel J. Splicing regulation in Drosophila sex determination. Prog Mol Subcell Biol 2003; 31:127–151.

    CAS  PubMed  Google Scholar 

  34. Park JW, Parisky K, Celotto AM et al. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc Natl Acad Sci USA 2004; 101(45):15974–15979.

    Article  CAS  PubMed  Google Scholar 

  35. Cartegni L, Chew SL, Kramer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3(4);285–298.

    Article  CAS  PubMed  Google Scholar 

  36. Caceres JF, Komblihtt AR, Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 2002; 18(4):186–193.

    Article  CAS  PubMed  Google Scholar 

  37. Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006; 126(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  38. Bracco L, Kearsey J. The relevance of alternative RNA splicing to pharmacogenomics. Trends Biotechnol 2003; 21(8):346–353.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Li HR, Fan JB et al. Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinformatics 2006; 7:202.

    Article  PubMed  Google Scholar 

  40. Eisen MB, Spellman PT, Brown PO et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95(25):14863–14868.

    Article  CAS  PubMed  Google Scholar 

  41. Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Ptoc Natl Acad Sci USA 2004; 101(16):6062–6067.

    Article  CAS  Google Scholar 

  42. Zhang W, Morris QD, Chang R et al. The functional landscape of mouse gene expression. J Biol 2004; 3(5):21.

    Article  PubMed  Google Scholar 

  43. Keene JD, Lager PJ. Posttranscriptional operons and regulons co-ordinating gene expression. Chromosome Res 2005; 13(3):327–337.

    Article  CAS  PubMed  Google Scholar 

  44. Lim LP, Lau NC, Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027):769–773.

    Article  CAS  PubMed  Google Scholar 

  45. Modrek B, Lee CJ. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 2003; 34(2):177–180.

    Article  CAS  PubMed  Google Scholar 

  46. Pan Q, Bakowski MA, Morris Q et al. Alternative splicing of conserved exons is frequently species-specific in human and mouse. Trends Genet 2005; 21(2):73–77.

    Article  CAS  PubMed  Google Scholar 

  47. Yeo GW, Van Nostrand E, Holste D et al. Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci USA 2005; 102(8):2850–2855.

    Article  CAS  PubMed  Google Scholar 

  48. Xing Y, Lee CJ. Protein modularity of alternatively spliced exons is associated with tissue-specific regulation of alternative splicing. PLoS Genet 2005; 1(3):e34.

    Article  PubMed  Google Scholar 

  49. Green RE, Lewis BP, Hillman RT et al. Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 2003; 19(Suppl 1): i118–i121.

    Article  PubMed  Google Scholar 

  50. Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 2003; 100(1):189–192.

    Article  CAS  PubMed  Google Scholar 

  51. Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 2005; 17(3):309–315.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu J, Shendure J, Mitra RD et al. Single molecule profiling of alternative pre-mRNA splicing. Science 2003; 30l(5634):836–838.

    Article  Google Scholar 

  53. Butz JA, Roberts KG, Edwards JS. Detecting changes in the relative expression of KRAS2 splice variants using polymerase colonies. Biotechnol Prog 2004; 20(6):1836–1839.

    Article  CAS  PubMed  Google Scholar 

  54. Mitra RD, Church GM. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res 1999; 27(24):e34.

    Article  CAS  PubMed  Google Scholar 

  55. Mitra RD, Butty VL, Shendure J et al. Digital genotyping and haplotyping with polymerase colonies. Proc Natl Acad Sci USA 2003; 100(10):5926–5931.

    Article  CAS  PubMed  Google Scholar 

  56. Mitra RD, Shendure J, Olejnik J et al. Fluorescent in situ sequencing on polymerase colonies. Anal Biochem 2003; 320(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  57. Milani L, Fredriksson M, Syvanen AC. Detection of alternatively spliced transcripts in leukemia cell lines by minisequencing on microarrays. Clin Chem 2006; 52(2):202–211.

    Article  CAS  PubMed  Google Scholar 

  58. Kim H, Pirrung MC. Arrayed primer extension computing with variant mRNA splice forms. Multiple isoforms of CD44 in a human breast tumor. J Am Chem Soc 2002; 124(18);4934–4935.

    Article  CAS  PubMed  Google Scholar 

  59. McCullough RM, Cantor CR, Ding C. High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res 2005; 33(11):e99.

    Article  PubMed  Google Scholar 

  60. Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet 2002; 30(1):13–19.

    Article  CAS  PubMed  Google Scholar 

  61. Lareau LF, Green RE, Bhatnagar RS et al. The evolving roles of alternative splicing. Curr Opin Struct Biol 2004; 14(3):273–282.

    Article  CAS  PubMed  Google Scholar 

  62. Stamm S, Ben-Ari S, Rafalska I et al. Function of alternative splicing. Gene 2005; 344:1–20.

    Article  CAS  PubMed  Google Scholar 

  63. Zavolan M, van Nimwegen E. The types and prevalence of alternative splice forms. Curr Opin Struct Biol 2006; 16(3):362–367.

    Article  CAS  PubMed  Google Scholar 

  64. Holste D, Huo G, Tung V et al. HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res 2006; 34(Database issue):D56–D62.

    Article  CAS  PubMed  Google Scholar 

  65. Gerhard DS, Wagner L, Feingold EA et al. The status, quality and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res 2004; 14(10B):2121–2127.

    Article  PubMed  Google Scholar 

  66. Baross A, Butterfield YS, Coughlin SM et al. Systematic recovery and analysis of full-ORF human cDNA clones. Genome Res 2004; 14(10B):2083–2092.

    Article  CAS  PubMed  Google Scholar 

  67. Thill G, Castelli V, Pallud S et al. ASEtrap: a biological method for speeding up the exploration of spliceomes. Genome Res 2006; 16(6):776–786.

    Article  CAS  PubMed  Google Scholar 

  68. Watahiki A, Waki K, Hayatsu N et al. Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas. Nat Methods 2004; 1(3):233–239.

    Article  PubMed  Google Scholar 

  69. Schweighoffer F, Ait-Ikhlef A, Resink AL et al. Qualitative gene profiling: a novel tool in genomics and in pharmacogenomics that deciphers messenger RNA isoforms diversity. Pharmacogenomics 2000; 1(2):187–197.

    Article  CAS  PubMed  Google Scholar 

  70. Hoskins RA, Stapleton M, George RA et al. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP). Nucleic Acids Res 2005; 33(21):e185.

    Article  PubMed  Google Scholar 

  71. Hasegawa Y, Fukuda S, Shimokawa K et al. A RecA-mediated exon profiling method. Nucleic Acids Res 2006; 34(13):e97.

    Article  PubMed  Google Scholar 

  72. Sorek R, Shemesh R, Cohen Y et al. A non-EST-based method for exon-skipping prediction. Genome Res 2004; 14(8):1617–1623.

    Article  CAS  PubMed  Google Scholar 

  73. Ohler U, Shomron N, Borge CB. Recognition of unknown conserved alternatively spliced exons. PLoS Comput Biol 2005; 1(2):113–122.

    Article  CAS  PubMed  Google Scholar 

  74. Chen FC, Chen CJ, Ho JY et al. Identification and evolutionary analysis of novel exons and alternative splicing events using cross-species EST-to-genome comparisons in human, mouse and rat. BMC Bioinfotmatics 2006; 7:136.

    Article  Google Scholar 

  75. Philipps DL, Park JW, Graveley BR. A computational and experimental approach toward a priori identification of alternatively spliced exons. RNA 2004; 10(12):1838–1844.

    Article  CAS  PubMed  Google Scholar 

  76. Agrawal R, Stormo GD. Using mRNAs lengths to accurately predict the alternatively spliced gene products in Caenorhabditis elegans. Bioinformatics 2006; 22(10):1239–1244.

    Article  CAS  PubMed  Google Scholar 

  77. Reboul J, Vaglio P, Rual JF et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 2003; 34(1):35–41.

    Article  PubMed  Google Scholar 

  78. Lamesch P, Milstein S, Hao T et al. C. elegans ORFeome version 3.1: increasing the coverage of OR-Feome resources with improved gene predictions. Genome Res 2004; 14(10B):2064–2069.

    Article  CAS  PubMed  Google Scholar 

  79. Chan EY. Advances in sequencing technology. Mutat Res 2005; 573(l–2):13–40.

    CAS  PubMed  Google Scholar 

  80. Mctzker ML. Emerging technologies in DNA sequencing. Genome Res 2005; 15(12):1767–1776.

    Article  Google Scholar 

  81. Shendure J, Mitra RD, Varma C et al. Advanced sequencing technologies: methods and goals. Nat Rev Genet 2004; 5(5):335–344.

    Article  CAS  PubMed  Google Scholar 

  82. Bentley DR. Whole-genome resequencing. Curr Opin Genet Dev 2006.

    Google Scholar 

  83. Shendure J, Porreca GJ, Reppas NB et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005; 309(5741):1728–1732.

    Article  CAS  PubMed  Google Scholar 

  84. Brenner S, Johnson M, Bridgham J et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 2000; 18(6):630–634.

    Article  CAS  PubMed  Google Scholar 

  85. Margulies M, Egholm M, Altman WE et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437(7057):376–380.

    CAS  PubMed  Google Scholar 

  86. Dressman D, Yan H. Traverso G et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003; 100(15):8817–8822.

    Article  CAS  PubMed  Google Scholar 

  87. Ronaghi M, Karamohamed S, Pettersson B et al. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 1996; 242(1):84–89.

    Article  CAS  PubMed  Google Scholar 

  88. Bainbridge MN, Warren RL, Hirst M et al. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 2006; 7:246.

    Article  PubMed  Google Scholar 

  89. Dear PH. One by one: Single molecule tools for genomics. Brief Funct Genomic Proteomic 2003; 1(4):397–416.

    Article  CAS  PubMed  Google Scholar 

  90. Greulich KO. Single-molecule studies on DNA and RNA. Chemphyschem 2005; 6(12):2458–2471.

    Article  CAS  PubMed  Google Scholar 

  91. Wang P, Yan B, Guo JT et al. Structural genomics analysis of alternative splicing and application to isoform structure modeling. Proc Natl Acad Sci USA 2005; 102(52):18920–18925.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Calarco, J.A., Saltzman, A.L., Ip, J.Y., Blencowe, B.J. (2007). Technologies for the Global Discovery and Analysis of Alternative Splicing. In: Blencowe, B.J., Graveley, B.R. (eds) Alternative Splicing in the Postgenomic Era. Advances in Experimental Medicine and Biology, vol 623. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77374-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77374-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77373-5

  • Online ISBN: 978-0-387-77374-2

Publish with us

Policies and ethics