Skip to main content

New Paradigms and Tools in Drug Design for Pain and Addiction

  • Chapter
Drug Addiction

Abstract

New modalities providing safe and effective treatment of pain, especially prolonged pathological pain, have not appeared despite much effort. In this mini-review/overview we suggest that new paradigms of drug design are required to counter the underlying changes that occur in the nervous system that may elicit chronic pain states. We illustrate this approach with the example of designing, in a single ligand, molecules that have agonist activity at μ and δ opioid receptors and antagonist activities at cholecystokinin (CCK) receptors. Our findings thus far provide evidence in support of this new approach to drug design. We also report on a new biophysical method, plasmon waveguide resonance (PWR) spectroscopy, which can provide new insights into information transduction in G-protein coupled receptors (GPCRs) as illustrated by the δ opioid receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hruby VJ. Designing peptide receptor agonists and antagonists. Nat Rev Drug Discov. 2002;1:847-858.

    Article  CAS  PubMed  Google Scholar 

  2. Ossipov MH, Lai J, Porreca F. Mechanisms of experimental neuropathic pain: Integration from animal models. In: McMahon S, Koltzenburg M, eds. Wall and Melzack’s Textbook of Pain. 5th ed. New York, NY: Elsevier; 2005:929-946.

    Google Scholar 

  3. Ossipov MH, Porreca F. Challenges in the development of novel treatment strategies for neu-ropathic pain. NeuroRx. 2005;2:650-661.

    Article  PubMed  Google Scholar 

  4. Vera-Portocarrero LP, Zhang ET, Ossipov MH, et al. Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization. Neuroscience. In press.

    Google Scholar 

  5. Ossipov MH, Porreca F. Descending modulation of pain. In: Merskey H, Loeser JD, Dubner R, eds. The Paths of Pain 1975-2005. Seattle, WA: IASP Press; 2005:117-130.

    Google Scholar 

  6. Xie JY, Herman SD, Stiller CO, et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci. 2005;25:409-416.

    Article  PubMed  CAS  Google Scholar 

  7. King T, Ossipov MH, Vanderah TW, Porreca F, Lai J. Is paradoxical pain induced by sus-tained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals. 2005;14:194-205.

    Article  CAS  PubMed  Google Scholar 

  8. Heinricher MM, Neubert MJ. Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol. 2004;92:1982-1989.

    Article  CAS  PubMed  Google Scholar 

  9. Wilcox GL, Stone LS, Ossipov MH, Lai J, Porreca F. Pharmacology of pain and analgesia. In: Pappagallo M, ed. The Neurologic Basis of Pain. New York, NY: McGraw-Hill; 2004:31-52.

    Google Scholar 

  10. Hruby VJ, Meyer J-P. Chemical synthesis of peptides. In: Hecht SM, ed. Bioorganic Chemistry: Peptides and Proteins. New York, NY: Oxford University Press; 1998:27-64.

    Google Scholar 

  11. Misicka A, Lipkowski AW, Horvath R, et al. Topographical requirements for δ opioid ligands: common structural features of dermenkephalin and deltorphin. Life Sci. 1992;51:1025-1032.

    Article  CAS  PubMed  Google Scholar 

  12. Kramer TH, Davis P, Hruby VJ, Burks TF, Porreca F. In vitro potency, affinity and agonist efficacy of highly selective δ opioid receptor ligands. J Pharmacol Exp Ther. 1993;266:577-584.

    CAS  PubMed  Google Scholar 

  13. Salamon Z, Macleod HA, Tollin G. Coupled plasmon-waveguide resonators: a new spectro-scopic tool for probing proteolipid film structure and properties. Biophys J. 1997;73:2791-2797.

    Article  CAS  PubMed  Google Scholar 

  14. Salamon Z, Tollin G. Plasmon resonance spectroscopy: probing molecular interactions at sur-faces and interfaces. Spectroscopy. 2005;15:161-175.

    Google Scholar 

  15. Tollin G, Salamon Z, Hruby VJ. Techniques: plasmon-waveguide resonance (PWR) spectros-copy as a tool to study ligand-GPCR interactions. Trends Pharmacol Sci. 2003;24:655-659.

    Article  CAS  PubMed  Google Scholar 

  16. Salamon Z, Cowell S, Varga E, Yamamura HI, Hruby VJ, Tollin G. Plasmon resonance stud-ies of agonist/antagonist binding to the human δ-opioid receptor: new structural insights into receptor-ligand interactions. Biophys J. 2000;79:2463-2474.

    Article  CAS  PubMed  Google Scholar 

  17. Alves ID, Salamon Z, Varga E, Yamamura HI, Tollin G, Hruby VJ. Direct observation of G-protein binding to the human δ-opioid receptor using plasmon-waveguide resonance spectros-copy. J Biol Chem. 2003;278:48890-48897.

    Article  CAS  PubMed  Google Scholar 

  18. Slaninová J, Knapp RJ, Wu J, et al. Opioid receptor binding properties of analgesic analogues of cholecystokinin octapeptide. Eur J Pharmacol. 1991;200:195-198.

    Article  PubMed  Google Scholar 

  19. Mosberg HI, Hurst R, Hruby VJ, et al. Bis-penicillamine enkephalins possess highly improved specificity toward δ opioid receptors. Proc Natl Acad Sci USA. 1983;80:5871-5874.

    Article  CAS  PubMed  Google Scholar 

  20. Hruby VJ, Fang SN, Kramer TH. Analogues of cholecystokinin26-33 selective for B-type CCK receptors possess δ opioid receptor agonist activity in vitro and in vivo: Evidence for similari-ties in CCK-B and δ opioid receptor requirements. In: Hodges RS, Smith JA, eds. Peptides: Chemistry, Structure and Biology. Proceedings of the 13th American Peptide Symposium; June 20-25, 1993; Alberta, Canada. Leiden, The Netherlands: ESCOM Publishers; 1994: 669-671.

    Google Scholar 

  21. Nikiforovich GV, Hruby VJ, Prakash O, Gehrig CA. Topographical requirements for δ-selec-tive opioid peptides. Biopolymers. 1991;31:941-955.

    Article  CAS  PubMed  Google Scholar 

  22. Hruby VJ, Fang SN, Knapp R, Kazmierski WM, Lui GK, Yamamura HI. Cholecystokinin analogues with high affinity and selectivity for brain membrane receptors. Int J Pept Protein Res. 1990;35:566-573.

    Article  CAS  PubMed  Google Scholar 

  23. Hruby VJ. Conformational restrictions of biologically active peptides via amino acid side chain groups. Life Sci. 1982;31:189-199. 494V.J. Hruby et al.

    Article  CAS  PubMed  Google Scholar 

  24. Hruby VJ, Al-Obeidi F, Kazmierski WM. Emerging approaches in the molecular design of receptor selective peptide ligands: conformational, topographical and dynamic considerations. Biochem J. 1990;268:249-262.

    CAS  PubMed  Google Scholar 

  25. Bartosz-Bechowski H, Davis P, Slaninova J, et al. Cyclic enkephalin analogues that are hybrids of DPDPE-related peptides and Met-enkephalin-Arg-Gly-Leu: prohormone analogues that retain good potency and selectivity for δ opioid receptors. J Pept Res. 1999;53:329-336.

    Article  CAS  PubMed  Google Scholar 

  26. Hruby VJ, Bartosz-Bechowski H, Davis P, et al. Cyclic enkephalin analogues with excep-tional potency and selectivity for δ-opioid receptors. J Med Chem. 1997;40:3957-3962.

    Article  CAS  PubMed  Google Scholar 

  27. Alves ID, Cowell SM, Salamon Z, Devanathan S, Tollin G, Hruby VJ. Different structural states of the proteolipid membrane are produced by ligand binding to the human δ-opioid receptor as shown by plasmon-waveguide resonance spectroscopy. Mol Pharmacol. 2004;65:1248-1257.

    Article  CAS  PubMed  Google Scholar 

  28. Hosohata Y, Varga EV, Stropova D, et al. Mutation W284L of the human δ opioid receptor reveals agonist specific conformational mechanisms of G-protein activation. Life Sci. 2001;68:2233-2242.

    Article  CAS  PubMed  Google Scholar 

  29. Alves ID, Salamon Z, Varga E, Yamamura HI, Tollin G, Hruby VJ. Direct observation of G-protein binding to the human δ-opioid receptor using plasmon-waveguide resonance spectros-copy. J Biol Chem. 2003;278:48890-48897.

    Article  CAS  PubMed  Google Scholar 

  30. Alves ID, Ciano KA, Boguslavsky V, et al. Selectivity, cooperativity, and reciprocity in the interactions between the δ-opioid receptor, its ligands, and G-proteins. J Biol Chem. 2004;279:44673-44682.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor J. Hruby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Hruby, V.J. et al. (2008). New Paradigms and Tools in Drug Design for Pain and Addiction. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_28

Download citation

Publish with us

Policies and ethics