Skip to main content

Indoor positioning approaches based on communication systems typically use the received signal strength (RSS) as measurements. To work properly, such a system often requires many calibration points before its start. Based on theoretical-propagation models (RF planning) and on self-organizing maps (SOM) an adaptive approach for Simultaneous Localization and Learning (SLL) has been developed. The algorithm extracts out of online measurements the true model of the RF propagation. Applying SLL, a self-calibrating RSS-based positioning system with high accuracies can be realized without the need of cost intensive calibration measurements during system installation or maintenance. The main aspects of SLL are addressed as well as convergence and statistical properties. Results for real-world DECT and WLAN setups are given, showing that the localization starts with a basic performance slightly better than Cell-ID, finally reaching the accuracy of pattern matching using calibration points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: IEEE InfoCom’00, pp. 775–784. Tel Aviv, Israel (2000)

    Google Scholar 

  2. Battiti, R., Brunato, M., Villani, A.: Statistical learning theory for location fingerprinting in wireless LANs. Technical Report, Universitá di Trento (2002)

    Google Scholar 

  3. Betoni Parodi, B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: Algebraic and statistical conditions for the use of SLL. In: ECC’07. Kos, Greece (2007)

    Google Scholar 

  4. Betoni Parodi, B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: SLL: Statistical conditions and algebraic properties. In: IEEE 4\text{th} WPNC’07, pp. 113–120. Hannover, Germany (2007)

    Google Scholar 

  5. Betoni Parodi, B., Lenz, H., Szabo, A., Wang, H., Horn, J., Bamberger, J., Obradovic, D.: Initialization and online-learning of RSS maps for indoor/campus localization. In: PLANS 2006, pp. 164–172. San Diego, CA, USA (2006)

    Google Scholar 

  6. Correia, L.M.: Wireless Flexible Personalized Communications. Wiley, New York, NY, USA (2001)

    Google Scholar 

  7. Cottrell, M., Fort, J.C., Pagés, G.: Two or three things that we know about the Kohonen algorithm. In: ESANN’94, pp. 235–244. Brussels, Belgium (1994)

    Google Scholar 

  8. Goldsmith, A.: Wireless Communications. Cambridge University Press (2005)

    Google Scholar 

  9. Günther, A., Hoene, C.: Measuring round trip times to determine the distance between WLAN nodes. In: Networking 2005. Waterloo, Canada (2005)

    Google Scholar 

  10. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-aware application. In: MobiCom, pp. 59–68. Seattle, WA, USA (1999)

    Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River, NJ, USA (1998)

    Google Scholar 

  12. Horn, J., Hanebeck, U.D., Riegel, K., Heesche, K., Hauptmann, W.: Nonlinear set-theoretic position estimation of cellular phones. In: ECC’03. Cambridge, UK (2003)

    Google Scholar 

  13. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  14. Liberti, J.C., Rappaport, T.S.: Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice-Hall, Upper Saddle River, NJ, USA (1999)

    Google Scholar 

  15. Lott, M., Forkel, I.: A multi-wall-and-floor model for indoor radio propagation. In: IEEE 53\text{rd} VTS’01 Spring, Berlin Heidelberg, New York, vol. 1, pp. 464–468. Rhodes, Greece (2001)

    Google Scholar 

  16. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: LANDMARC: Indoor location sensing using active RFID. Wireless Networks 10, 701–710 (2004)

    Article  Google Scholar 

  17. Obradovic, D., Lenz, H., Schupfner, M.: Sensor fusion in Siemens car navigation system. In: 14\text{th} IEEE Machine Learning for Signal Processing, pp. 655–664. São Luiz, MA, Brazil (2004)

    Google Scholar 

  18. Oppermann, I., Karlsson, A., Linderbäck, H.: Novel phase based, cross-correlation position estimation technique. In: IEEE ISSSTA’04, pp. 340–345 (2004)

    Google Scholar 

  19. Pahlavan, K., Li, X., Makela, J.P.: Indoor geolocation science and technology. IEEE Communications Magazine 40(2), 112–118 (2002)

    Article  Google Scholar 

  20. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket location-support system. In: 6\text{th} MobiCom, pp. 32–43. Boston, MA, USA (2000)

    Google Scholar 

  21. Rappaport, T.S.: Wireless communications principles and practice, 2\text{nd} edn. Prentice-Hall, Englewood Cliffs, NJ (2002)

    Google Scholar 

  22. Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., Sievänen, J.: A probabilistic approach to WLAN user location estimation. International Journal of Wireless Information Networks 9(3), 155–164 (2002)

    Article  Google Scholar 

  23. Tila, F., Shepherd, P.R., Pennock, S.R.: 2 GHz propagation and diversity evaluation for in-building communications up to 4 MHz using high altitude platforms (HAP). In: IEEE 54\text{th} VTS’01 Fall, vol. 1, pp. 121–125 (2001)

    Google Scholar 

  24. Wang, H.: Fusion of information sources for indoor positioning with field strength measurements. Master’s thesis, TU-München (2005)

    Google Scholar 

  25. Wang, H., Lenz, H., Szabo, A., Bamberger, J., Hanebeck, U.D.: WLAN-based pedestrian tracking using particle filters and low-cost MEMS sensors. In: IEEE 4\text{th} WPNC’07, pp. 1–7. Hannover, Germany (2007)

    Google Scholar 

  26. Wang, H., Lenz, H., Szabo, A., Hanebeck, U.D., Bamberger, J.: Fusion of barometric sensors, WLAN signals and building information for 3-D indoor/campus localization. In: IEEE MFI’06, pp. 426–432. Heidelberg, Germany (2006)

    Google Scholar 

  27. Want, R., Hopper, A., Falcão, V., Gibbons, J.: The Active Badge location system. ACM Transactions on Informatic Systems 10(1), 91–102 (1992)

    Article  Google Scholar 

  28. Wölfle, G., Wahl, R., Wertz, P., Wildbolz, P., Landstorfer, F.: Dominant path prediction model for indoor scenarios. In: GeMIC’05, pp. 176–179. Ulm, Germany (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lenz, H. et al. (2008). Adaptive Localization in Wireless Networks. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds) Signal Processing Techniques for Knowledge Extraction and Information Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74367-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74367-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74366-0

  • Online ISBN: 978-0-387-74367-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics