Skip to main content

Blood–Retina Barriers

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Neurons of the retina are segregated from the blood stream via two different gateways: the inner and the outer blood–retina barriers (BRBs). The inner BRB consists of endothelial cells forming retinal capillaries. The inner barrier is similar to the microvascular blood–brain barrier (BBB) within other regions of the central nervous system (CNS). The outer blood–retina barrier (oBRB) is formed by the retinal pigment epithelium (RPE), which is positioned as interface between the neural retina and the nonneural choroid. In humans, only the inner two-thirds of the 250-μm thick retina is vascularized, and thus served by the inner blood barrier. The outer one-third of the retina is devoid of any vasculature and depends on nutrient/gas exchange via the RPE. Blood components reach the RPE from fenestrated, highly permeable blood vessels of the neighboring nonneuronal choroid. Despite the fact that both the endothelial and epithelial barriers have ontogenetically different origins and very diverging cellular structures, on the molecular and functional levels many similarities are evident. These include barrier characteristics based on tight junctions, carrier features with regard to transporters including P-glycoprotein (P-gp)/multidrug resistance protein, expression patterns of biotransformation enzymes, and immunological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

BBB:

blood–brain barrier

BRB:

Blood–retina barrier

oBRB:

outer blood–retina barrier

CAM:

chorioallantoic membrane

CMV:

cytomegalovirus

EAE:

experimental allergic encephalomyelitis

EAU:

experimental autoimmune uveoretinitis

GABA:

γ-aminobutyric acid

GFAP:

glial fibrillary astrocytic protein

γGT:

γ-glutamyl transpeptidase

LIF:

leukemia inhibitory factor

MCP-1:

monocyte chemoattractant protein-1

MMPs:

matrix metalloproteinases

MRP:

mdr-associated proteins

NF-κB:

nuclear factor-κB

PDGF:

platelet-derived growth factor

P-gp:

P-glycoprotein

P-gp/mdr:

P-glycoprotein/multidrug resistance-1

RANTES:

regulated on activation of normal T cell expressed and released

RPE:

retinal pigment epithelium

SDF-1:

stromal cell-derived factor-1

VEGF:

vascular endothelial cell growth factor

References

  • Abbott NJ, Ronnback L, Hansson E. 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1): 41–53.

    CAS  PubMed  Google Scholar 

  • Abbruscato TJ, Lopez SP, Roder K, Paulson JR. 2004. Regulation of blood-brain barrier Na,K,2Cl-cotransporter through phosphorylation during in vitro stroke conditions and nicotine exposure. J Pharmacol Exp Ther 310(2): 459–468.

    CAS  PubMed  Google Scholar 

  • Adorante JS, Miller SS. 1990. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport. J Gen Physiol 96: 1153–1176.

    CAS  PubMed  Google Scholar 

  • Akeo K, Curran SA, Dorey CK. 1988. Superoxide dismutase activity and growth of retinal pigment epithelial cells are suppressed by 20% oxygen in vitro. Curr Eye Res 7: 961–967.

    CAS  PubMed  Google Scholar 

  • Alm A, Törnquist P. 1985. Lactate transport through the blood-retinal and the blood-brain barrier in rats. Ophthalmic Res 17: 181–184.

    CAS  PubMed  Google Scholar 

  • Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, et al. 1998. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: Vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 47(12): 1953–1959.

    CAS  Google Scholar 

  • Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA. 1989. An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86: 4544–4548.

    CAS  PubMed  Google Scholar 

  • Balda MS, Anderson JM, Matter K. 1996. The SH3 domain of the tight junction protein ZO-1 binds to a serine protein kinase that phosphorylates a region C-terminal to this domain. FEBS Lett 399(3): 326–332.

    CAS  PubMed  Google Scholar 

  • Bamford CR, Ganley JP, Sibley WA, Laguna JF. 1978. Uveitis, perivenous sheathing and multiple sclerosis. Neurology 28: 119–124.

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ. 1997. The role of the blood-brain barrier transporter PTS-1 in regulating concentrations of methionine enkephalin in blood and brain. Alcohol 14(3): 237–245.

    CAS  PubMed  Google Scholar 

  • Bergersen I, Johannsson E, Veruki ML, Nagelhus EA, Halestrap A, et al. 1999. Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 90(1): 319–331.

    CAS  PubMed  Google Scholar 

  • Berman ER. 1979. Biochemistry of the retinal pigment epithelium. The Retinal Pigment Epithelium. Marmor MF, editor. Cambridge, Massachusetts, and London, England: Harvard University Press pp. 83–102.

    Google Scholar 

  • Bhutto IA, McLeod DS, Merges C, Hasegawa T, Lutty GA. 2006. Localisation of SDF-1 and its receptor CXCR4 in retina and choroid of aged human eyes and in eyes with age related macular degeneration. Br J Ophthalmol 90(7): 906–910.

    CAS  PubMed  Google Scholar 

  • Bolton SJ, Anthony DC, Perry VH. 1998. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86(4): 1245–1257.

    CAS  PubMed  Google Scholar 

  • Burns MS, Hartz MJ. 1992. The retinal pigment epithelium induces fenestration of endothelial cells in vivo. Curr Eye Res 11: 863–873.

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Tessier-Lavigne M. 2005. Common mechanisms of nerve and blood vessel wiring. Nature 436(7048): 193–200.

    CAS  PubMed  Google Scholar 

  • Chakravarthy U, Gardiner TA, Anderson P, Archer DB, Trimble ER. 1992. The effect of endothelin 1 on the retinal microvascular pericyte. Microvasc Res 43: 241–254.

    CAS  PubMed  Google Scholar 

  • Chan-Ling T, Stone J. 1992. Degeneration of astrocytes in feline retinopathy of prematurity causes failure of the blood-retinal barrier. Invest Ophthalmol Vis Sci 33(7): 2148–2159.

    CAS  PubMed  Google Scholar 

  • Chan-Ling T, Gock B, Stone J. 1995. The effect of oxygen on vasoformative cell division. Evidence that “physiological hypoxia” is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 36(7): 1201–1214.

    CAS  PubMed  Google Scholar 

  • Chishty M, Reichel A, Begley DJ, Abbott NJ. 2002. Glial induction of blood-brain barrier-like L-system amino acid transport in the ECV304 cell line. Glia 39(2): 99–104.

    CAS  PubMed  Google Scholar 

  • Connolly SE, Hores TA, Smith LE, D'Amore PA. 1988. Characterization of vascular development in the mouse retina. Microvasc Res 36(3): 275–290.

    CAS  PubMed  Google Scholar 

  • Cordon-Cordo C, O'Brain J, Casals D, Rittman-Grauer L, Biedler JL, et al. 1989. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86: 695–698.

    Google Scholar 

  • Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV. 2000a. Control of chemokine production at the blood-retina barrier. Immunology 101(3): 426–433.

    CAS  Google Scholar 

  • Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV. 2000b. CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1α. J Immunol 165(8): 4372–4378.

    CAS  Google Scholar 

  • Crone C, Olesen SP. 1982. Electrical resistance of brain microvascular endothelium. Brain Res 241: 49–55.

    CAS  PubMed  Google Scholar 

  • Devine L, Lightman S, Greenwood J. 1996. Lymphocyte migration across the anterior and posterior blood-retinal barrier in vitro. Cell Immunol 168: 267–275.

    CAS  PubMed  Google Scholar 

  • Dorrell MI, Aguilar E, Friedlander M. 2002. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43(11): 3500–3510.

    PubMed  Google Scholar 

  • Dowling JE. 1991. Retinal neuromodulation: The role of dopamine. Vis Neurosci 7: 87–97.

    CAS  PubMed  Google Scholar 

  • Dragsten PR, Blumenthal R, Handler JS. 1981. Membrane asymmetry in epithelia: Is the tight junction a barrier to diffusion in the plasma membrane? Nature 294: 718–722.

    CAS  PubMed  Google Scholar 

  • Duvvuri S, Majumdar S, Mitra AK. 2003. Drug delivery to the retina: Challenges and opportunities. Expert Opin Biol Ther 3(1): 45–56.

    CAS  PubMed  Google Scholar 

  • Elner SG, Elner VM, Pavilack MA, Todd RF, Mayo-Bond L, et al. 1992. Modulation and function of intercellular adhesion molecule-1 (CD54) on human retinal pigment epithelial cells. Lab Invest 66: 200–211.

    CAS  PubMed  Google Scholar 

  • el-Shabrawi Y, Eckhardt M, Berghold A, Faulborn J, Auboeck L, et al. 2000. Synthesis pattern of matrix metalloproteinases (MMPs) and inhibitors (TIMPs) in human explant organ cultures after treatment with latanoprost and dexamethasone. Eye 2000 Jun; 14(Pt3A): 375–383, 14: 375–383.

    Google Scholar 

  • Engelhardt B. 2006. Development of the blood-brain interface. Blood-Brain Barriers. Needergaard M, editor. Wiley-VCH. pp. 11–39.

    Google Scholar 

  • Engelhardt B, Risau W. 1995. Development of the blood-brain barrier. New Concepts of a Blood-Brain Barrier. Segal MB, editor. New York: Plenum Press; pp. 11–31.

    Google Scholar 

  • Franzen B, Duvefelt K, Jonsson C, Engelhardt B, Ottervald J, et al. 2003. Gene and protein expression profiling of human cerebral endothelial cells activated with tumor necrosis factor-α. Brain Res Mol Brain Res 115(2): 130–146.

    CAS  PubMed  Google Scholar 

  • Fujimoto K. 1995. Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108(Pt 11): 3443–3449.

    CAS  PubMed  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. 1998. Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141(7): 1539–1550.

    CAS  PubMed  Google Scholar 

  • Gale NW, Yancopoulos GD. 1999. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13(9): 1055–1066.

    CAS  PubMed  Google Scholar 

  • Garcia DM, Burnside B. 1994. Suppression of cAMP-induced pigment granule aggregation in RPE by organic anion transport inhibitors. Invest Ophthalmol Vis Sci 35: 178–188.

    CAS  PubMed  Google Scholar 

  • Garcia RI, Szabó G, Fitzpatrick TB. 1979. Molecular and cell biology of melanin. The Retinal Pigment Epithelium. Marmor MF, editor. Cambridge, Massachusetts and London, England: Harvard University Press; pp. 124–147.

    Google Scholar 

  • Gariano RF, Gardner TW. 2005. Retinal angiogenesis in development and disease. Nature 438(7070): 960–966.

    CAS  PubMed  Google Scholar 

  • Gariano RF, Hu D, Helms J. 2006. Expression of angiogenesis-related genes during retinal development. Gene Expr Patterns 6(2): 187–192.

    CAS  PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, et al. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6): 1163–1177.

    CAS  PubMed  Google Scholar 

  • Gill DR, Hyde SC, Higgins CF, Valverde MA, Mintenig GM, et al. 1992. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71: 23–32.

    CAS  PubMed  Google Scholar 

  • Goldstein GW. 1988. Endothelial cell-astrocyte interactions. A cellular model of the blood-brain barrier. Ann N Y Acad Sci 529: 31–39.

    CAS  PubMed  Google Scholar 

  • Greenwood J, Amos CL, Walters CE, Couraud PO, Lyck R, et al. 2003. Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J Immunol 171(4): 2099–2108.

    CAS  PubMed  Google Scholar 

  • Guillemot F, Cepko CL. 1992. Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114: 743–754.

    CAS  PubMed  Google Scholar 

  • Gumbiner B, Simons K. 1986. A functional assay for proteins involved in establishing an epithelial occluding barrier: Identification of an uvomorulin-like polypeptide. J Cell Biol 102: 457–468.

    CAS  PubMed  Google Scholar 

  • Guy J, Rao NA. 1984. Acute and chronic experimental optic neuritis. Alteration in the blood-optic nerve barrier. Arch Ophthalmol 102(3): 450–454.

    CAS  PubMed  Google Scholar 

  • Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, et al. 2004. Astrocyte-mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315(2): 157–166.

    PubMed  Google Scholar 

  • Han Y-H, Sweet DH, Hu D-N, Pritchard JB. 2001. Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther 296(2): 450–457.

    CAS  PubMed  Google Scholar 

  • Harik SI, Kalaria RN, Whitney PM, Andersson L, Lundahl P, et al. 1990. Glucose transporters are abundant in cells with “occluding” junctions at the blood-eye barriers. Proc Natl Acad Sci USA 87: 4261–4264.

    CAS  PubMed  Google Scholar 

  • Hayes KC, Lindsey S, Stephan ZF, Brecker D. 1989. Retinal pigment epithelium possesses both LDL and scavenger receptor activity. Invest Ophthalmol Vis Sci 30: 225–232.

    CAS  PubMed  Google Scholar 

  • Hickey WF. 2001. Basic principles of immunological surveillance of the normal central nervous system. Glia 36(2): 118–124.

    CAS  PubMed  Google Scholar 

  • Holash JA, Stewart PA. 1993. The relationship of astrocyte-like cells to the vessels that contribute to the blood-ocular barriers. Brain Res 629: 218–224.

    CAS  PubMed  Google Scholar 

  • Holtkamp GM, Kijlstra A, Peek R, de Vos AF. 2001. Retinal pigment epithelium-immune system interactions: Cytokine production and cytokine-induced changes. Prog Retin Eye Res 2001 Jan; 20(1): 29–48.

    CAS  Google Scholar 

  • Honda S, Yamamoto M, Saito N. 1995. Immunocytochemical localization of three subtypes of GABA transporter in rat retina. Brain Res Mol Brain Res 33: 319–325.

    CAS  PubMed  Google Scholar 

  • Hu P, Pollard J, Hunt N, Taylor J, Chan-Ling T. 1998. Microvascular and cellular responses in the optic nerve of rats with acute experimental allergic encephalomyelitis (EAE). Brain Pathol 8(3): 475–486.

    CAS  PubMed  Google Scholar 

  • Hughes S, Chang-Ling T. 2000. Roles of endothelial cell migration and apoptosis in vascular remodeling during development of the central nervous system. Microcirculation 7(5): 317–333.

    CAS  PubMed  Google Scholar 

  • Hunt RC, Dewey A, Davis AA. 1989. Transferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton. J Cell Sci 92: 655–666.

    CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, et al. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516): 468–472.

    CAS  PubMed  Google Scholar 

  • Janzer RC, Raff MC. 1987. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325: 253–257.

    CAS  PubMed  Google Scholar 

  • Jiang B, Bezhadian MA, Caldwell RB. 1995. Astrocytes modulate retinal vasculogenesis: Effects on endothelial cell differentiation. Glia 15(1): 1–10.

    CAS  PubMed  Google Scholar 

  • Kachar B, Reese TS. 1982. Evidence for the lipidic nature of tight junction strands. Nature 296: 464–466.

    CAS  PubMed  Google Scholar 

  • Kelley C, D'Amore P, Hechtman HB, Shepro D. 1988. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres in vitro. J Muscle Res Cell Motil 9: 184–194.

    CAS  PubMed  Google Scholar 

  • Kennedy BG, Mangini NJ. 2002. P-glycoprotein expression in human retinal pigment epithelium. Mol Vis 8: 422–430.

    CAS  PubMed  Google Scholar 

  • Kenyon E, Yu K, La Cour M, Miller SS. 1994. Lactate transport mechanisms at apical and basolateral membranes of bovine retinal pigment epithelium. Am J Physiol 267: C1561–C1573.

    CAS  PubMed  Google Scholar 

  • Kniesel U, Wolburg H. 1993. Tight junction complexity in the retinal epithelium of the chicken during development. Neurosci Lett 149: 71–74.

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kobayashi H, Ueda M, Honda Y. 1998. Estrogen receptor expression in bovine and rat retinas. Invest Ophthalmol Vis Sci 39: 2105–2110.

    CAS  PubMed  Google Scholar 

  • Koizumi K, Poulaki V, Doehmen S, Welsandt G, Radetzky S, et al. 2003. Contribution of TNF-α to leukocyte adhesion, vascular leakage, and apoptotic cell death in endotoxin-induced uveitis in vivo. Invest Ophthalmol Vis Sci 44(5): 2184–2191.

    PubMed  Google Scholar 

  • Korte GE, Rappa E, Andracchi S. 1991. Localization of alkaline phosphatase on basolateral plasma membrane of normal and regenerating retinal pigment epithelium. Invest Ophthalmol Vis Sci 32(13): 3187–3197.

    CAS  PubMed  Google Scholar 

  • Koyano S, Araie M, Eguchi S. 1993. Movement of fluorescein and its glucuronide across retinal pigment epithelium-choroid. Invest Ophthalmol Vis Sci 34: 531–538.

    CAS  PubMed  Google Scholar 

  • Kremer C, Breier G, Risau W, Plate KH. 1997. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57: 3852–3859.

    CAS  PubMed  Google Scholar 

  • Kupersmith MJ, Shakib M. 1989. The blood-ocular barrier. Implications of the Blood-Brain Barrier and its Manipulation. Neuwelt EA, editor. New York: Plenum Press; pp. 369–390.

    Google Scholar 

  • Kuwabara T. 1979. Species differences in the retinal pigment epithelium. The Retinal Pigment Epithelium. Marmor MF, editor. Cambridge: Harvard University Press; pp. 58–82.

    Google Scholar 

  • Lassmann H, Rinner W, Hickey WF. 1994. Differential role of hematogenous macrophages, resident microglia and astrocytes in antigen presentation and tissue damage during autoimmune encephalomyelitis. Neuropathol Appl Neurobiol 20(2): 195–196.

    CAS  PubMed  Google Scholar 

  • Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, et al. 2003. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9(7): 900–906.

    CAS  PubMed  Google Scholar 

  • Liebner S, Engelhardt B. 2005. Development of the blood-brain barrier. The Blood-Brain Barrier and its Microenvironment. Prat A, editor. New York: Taylor & Francis; pp. 1–26.

    Google Scholar 

  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, et al. 2000. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100: 323–331.

    CAS  PubMed  Google Scholar 

  • Ling TL, Stone J. 1988. The development of astrocytes in the cat retina: Evidence of migration from the optic nerve. Brain Res Dev Brain Res 44(1): 73–85.

    CAS  PubMed  Google Scholar 

  • Ling TL, Mitrofanis J, Stone J. 1989. Origin of retinal astrocytes in the rat: Evidence of migration from the optic nerve. J Comp Neurol 286(3): 345–352.

    CAS  PubMed  Google Scholar 

  • Liversidge J, Forrester JV. 1998. Regulation of immune responses by the retinal pigment epithelium. Retinal Pigment Epithelium, Function and Disease. Wolfensberger TJ, editor. Oxford, New York: Oxford University Press; pp. 511–527.

    Google Scholar 

  • Liversidge JM, Sewell HF, Forrester JV. 1988. Human retinal pigment epithelial cells differentially express MHC class II (HLA, DP, DR and DQ) antigens in response to in vitro stimulation with lymphokine or purified IFN-γ. Clin Exp Immunol 73: 489–494.

    CAS  PubMed  Google Scholar 

  • Lobrinus JA, Juillerat-Jeanneret L, Darekar P, Schlosshauer B, Janzer RC. 1992. Induction of the blood-brain barrier specific HT7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble factor derived from astrocytes. Dev Brain Res 70: 207–211.

    CAS  Google Scholar 

  • Lukes A, Mun-Bryce S, Lukes M, Rosenberg GA. 1999. Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol 19: 267–284.

    CAS  PubMed  Google Scholar 

  • Male D. 1995. The blood-brain barrier—no barrier to a determined lymphocyte. New Concepts of a Blood-Brain Barrier. Segal MB, editor. New York: Plenum Press; pp. 311–314.

    Google Scholar 

  • Male DK, Pryce G, Hughes CCW. 1987. Antigen presentation in brain: MHC induction on brain endothelium and astrocytes compared. Immunologie 60: 453–459.

    CAS  Google Scholar 

  • Marmor MF. 1998. Comparative and evolutionary aspects of the retinal pigment epithelium. The Retinal Pigment Epithelium. Wolfensberger TJ, editor. New York: Oxford University Press; pp. 23–37.

    Google Scholar 

  • Mey J, Thanos S. 1992. Development of the visual system of the chick—A review. J Hirnforsch 33: 673–702.

    CAS  PubMed  Google Scholar 

  • Meyer J, Rauh J, Galla H-J. 1991. The susceptibility of cerebral endothelial cells to astroglial induction of blood-brain barrier enzymes Depends on their proliferative state. J Neurochem 57: 1971–1977.

    CAS  PubMed  Google Scholar 

  • Mi H, Haeberle H, Barres BA. 2001. Induction of astrocyte differentiation by endothelial cells. J Neurosci 21(5): 1538–1547.

    CAS  PubMed  Google Scholar 

  • Michaelson IC. 1948. The mode of development of the vascular system of the retina, with some observations on its significance for certain diseases. Trans Ophthalmol Soc UK 68: 137–181.

    Google Scholar 

  • Misra A, Ganesh S, Shahiwala A, Shah SP. 2003. Drug delivery to the central nervous system: A review. J Pharm Pharm Sci 6(2): 252–273.

    CAS  PubMed  Google Scholar 

  • Morcos Y, Hosie MJ, Bauer HC, Chan-Ling T. 2001. Immunolocalization of occludin and claudin-1 to tight junctions in intact CNS vessels of mammalian retina. J Neurocytol 30(2): 107–123.

    CAS  PubMed  Google Scholar 

  • Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S. 1999a. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol 145(3): 579–588.

    CAS  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S. 1999b. Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147(1): 185–194.

    CAS  Google Scholar 

  • Murakami H, Sawada N, Koyabu N, Ohtani H, Sawada Y. 2000. Characteristics of choline transport across the blood-brain barrier in mice: Correlation with in vitro data. Pharm Res 17(12): 1526–1530.

    CAS  PubMed  Google Scholar 

  • Nagafuchi A, Takeichi M. 1988. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 7: 3679–3684.

    CAS  PubMed  Google Scholar 

  • Nagy Z, Martinez K. 1992. Astrocytic induction of endothelial tight junction. Ann N Y Acad Sci: 394–404.

    Google Scholar 

  • Nash MS, Osborne NN. 1997. Pharmacologic evidence for 5-HT1A receptors associated with human retinal pigment epithelial cells in culture. Invest Ophthalmol Vis Sci 38(2): 510–519.

    CAS  PubMed  Google Scholar 

  • Ohguro H, Chiba S, Igarashi Y, Matsumoto H, Akino T, et al. 1993. β-Arrestin and arrestin are recognized by autoantibodies in sera from multiple sclerosis patients. Proc Natl Acad Sci USA 90: 3241–3245.

    CAS  PubMed  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, et al. 2000. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7): 423–427.

    CAS  PubMed  Google Scholar 

  • Orlidge A, D'Amore PA. 1987. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105: 1455–1462.

    CAS  PubMed  Google Scholar 

  • Ozaki H, Hayashi H, Vinores SA, Moromizato Y, Campochiaro PA, et al. 1997. Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp Eye Res 64: 505–517.

    CAS  PubMed  Google Scholar 

  • Padgett LC, Lui GM, Werb Z, La Vail MM. 1997. Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 in the retinal pigment epithelium and interphotoreceptor matrix: Vectorial secretion and regulation. Exp Eye Res 64: 927–938.

    CAS  PubMed  Google Scholar 

  • Pardridge WM. 1995. Transport of small molecules through the blood-brain barrier: Biology and methodology. Adv Drug Deliv Rev 15: 5–36.

    CAS  Google Scholar 

  • Pardridge WM, Triguero D, Yang J, Cancilla PA. 1990. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J Pharmacol Exp Ther 253(2): 884–891.

    CAS  PubMed  Google Scholar 

  • Pautler EL, Tengerdy C. 1986. Transport of acidic amino acids by the bovine pigment epithelium. Exp Eye Res 43: 207–214.

    CAS  PubMed  Google Scholar 

  • Penfold PL, Provis JM, Madigan MC, van Driel D, Billson FA. 1990. Angiogenesis in normal human retinal development: The involvement of astrocytes and macrophages. Graefes Arch Clin Exp Ophthalmol 228(3): 255–263.

    CAS  PubMed  Google Scholar 

  • Philp NJ, Yoon H, Grollman EF. 1998. Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE—Rapid Communication. Am J Physiol Regul Integr Comp Physiol 43(6): R1824–R1828.

    Google Scholar 

  • Prat A, Biernacki K, Lavoie JF, Poirier J, Duquette P, et al. 2002. Migration of multiple sclerosis lymphocytes through brain endothelium. Arch Neurol 59(3): 391–397.

    PubMed  Google Scholar 

  • Ransohoff RM, Kivisakk P, Kidd G. 2003. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3(7): 569–581.

    CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ. 1967. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217.

    CAS  PubMed  Google Scholar 

  • Reh TA, Radke K. 1988. A role for the extracellular matrix in retinal neurogenesis in vitro. Dev Biol 129: 283–293.

    CAS  PubMed  Google Scholar 

  • Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, et al. 1994. Identification of a new catenin: The tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 14: 8333–8342.

    CAS  PubMed  Google Scholar 

  • Risau W. 1997. Mechanisms of angiogenesis. Nature 386: 671–674.

    CAS  PubMed  Google Scholar 

  • Risau W, Engelhardt B, Wekerle H. 1990. Immune function of the blood-brain barrier: Incomplete presentation of protein (auto-)antigens by rat brain microvascular endothelium in vitro. J Cell Biol 110: 1757–1766.

    CAS  PubMed  Google Scholar 

  • Rizzolo LJ. 1997. Polarity and the development of the outer blood-retinal barrier. Histol Histopath 12: 1057-1067.

    Google Scholar 

  • Russ PK, Davidson MK, Hoffman LH, Haselton FR. 1998. Partial characterization of the human retinal endothelial cell tight and adherens junction complexes. Invest Ophthalmol Vis Sci 39(12): 2479–2485.

    CAS  PubMed  Google Scholar 

  • Sandercoe TM, Madigan MC, Billson FA, Penfold PL, Provis JM. 1999. Astrocyte proliferation during development of the human retinal vasculature. Exp Eye Res 69(5): 511–523.

    CAS  PubMed  Google Scholar 

  • Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, et al. 1997. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 94: 4028–4033.

    CAS  PubMed  Google Scholar 

  • Schlosshauer B, Herzog K-H. 1990. Neurothelin: An inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J Cell Biol 110: 1261–1274.

    CAS  PubMed  Google Scholar 

  • Schmidt S, Linington C, Zipp F, Sotgiu S, de Waal Malefyt R, et al. 1997. Multiple sclerosis: Comparison of the human T-cell response to S100 β and myelin basic protein reveals parallels to rat experimental autoimmune panencephalitis. Brain 120: 1437–1445.

    PubMed  Google Scholar 

  • Schwartzman ML, Masferrer J, Dunn MW, McGiff JC, Abraham NG. 1987. Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues. Curr Eye Res 6: 623–630.

    CAS  PubMed  Google Scholar 

  • Seulberger H, Lottspeich F, Risau W. 1990. The inducible blood-brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein. EMBO J 9: 2151–2158.

    CAS  PubMed  Google Scholar 

  • Sharom FJ. 1997. The p-glycoprotein efflux pump: How does it transport drugs? J Membr Biol 160: 161–175.

    CAS  PubMed  Google Scholar 

  • Shih SC, Ju M, Liu N, Smith LE. 2003. Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 112(1): 50–57.

    CAS  PubMed  Google Scholar 

  • Singhal SS, Godley BF, Chandra A, Pandya U, Jin GF, et al. 1999. Induction of glutathione S-transferase hGST 5.8 is an early response to oxidative stress in RPE cells. Invest Ophthalmol Vis Sci 40: 2652–2659.

    CAS  PubMed  Google Scholar 

  • Staddon JM, Herrenknecht K, Smales C, Rubin LL. 1995. Evidence that tyrosine phosphorylation may increase tight junction permeability. J Cell Sci 108: 609–619.

    CAS  PubMed  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, et al. 2002. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109(3): 327–336.

    CAS  PubMed  Google Scholar 

  • Steinberg RH, Miller SS. 1979. Transport and membrane properties of the retinal pigment epithelium. The Retinal Pigment Epithelium. Marmor MF, editor. Cambridge, Massachusetts and London, England: Harvard University Press; pp. 205–225.

    Google Scholar 

  • Steinberg RH, Wood I. 1979. The relationship of the retinal pigment epithelium to photoreceptor outer segments in human retina. The Retinal Pigment Epithelium. Marmor MF, editor. Cambridge, Massachusetts and London, England: Harvard University Press; pp. 32–44.

    Google Scholar 

  • Steuer H, Jaworski A, Elger B, Kaussmann M, Keldenich J, et al. 2005. Functional characterization and comparison of the outer blood-retina barrier and the blood-brain barrier. Invest Ophthalmol Vis Sci 46(3): 1047–1053.

    PubMed  Google Scholar 

  • Steuer H, Jaworski A, Stoll D, Schlosshauer B. 2004. In vitro model of the outer blood-retina barrier. Brain Res Brain Res Protoc 13(1): 26–36.

    CAS  PubMed  Google Scholar 

  • Stewart PA, Tuor UI. 1994. Blood-eye barriers in the rat—Correlation of ultrastructure with function. J Comp Neurol 340: 566–576.

    CAS  PubMed  Google Scholar 

  • Stewart PA, Wiley MJ. 1981. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev Biol 84: 183–192.

    CAS  PubMed  Google Scholar 

  • Strauss O, Mergler S, Wiederholt M. 1997. Regulation of L-type calcium channels by protein tyrosine kinase and protein kinase C in cultured rat and human retinal pigment epithelial cells. FASEB J 11: 859–867.

    CAS  PubMed  Google Scholar 

  • Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, et al. 2001. Characterization of the efflux transport of 17β-estradiol-d-17β-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther 298(1): 316–322.

    CAS  PubMed  Google Scholar 

  • Takanaga H, Ohtsuki S, Hosoya K, Terasaki T. 2001. GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the mouse blood-brain barrier. J Cereb Blood Flow Metab 21: 1232–1239.

    CAS  PubMed  Google Scholar 

  • Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, et al. 2003. New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today 8(20): 944–954.

    CAS  PubMed  Google Scholar 

  • Tervooren D, Heimann K, Bartz-Schmidt KU, Walter P, Weller M. 1998. Intravitreal daunomycin induces multidrug resistance in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39(1): 164–170.

    PubMed  Google Scholar 

  • Tomi M, Abukawa H, Nagai Y, Hata T, Takanaga H, et al. 2004. Retinal selectivity of gene expression in rat retinal versus brain capillary endothelial cell lines by differential display analysis. Mol Vis 10: 537–543.

    CAS  PubMed  Google Scholar 

  • Tontsch U, Bauer H-C. 1991. Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Res 539: 247–253.

    CAS  PubMed  Google Scholar 

  • Törnquist P, Alm A. 1986. Carrier-mediated transport of amino acids through the blood-retinal and the blood-brain barriers. Graefe's Arch Clin Exp Ophthalmol 224: 21–25.

    Google Scholar 

  • Tso MO, Shih CY, McLean IW. 1975. Is there a blood-brain barrier at the optic nerve head? Arch Ophthalmol 93(9): 815–825.

    CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M, Itoh M. 1998. Molecular dissection of tight junctions: Occludin and ZO-1. Introduction to the Blood-Brain Barrier. Pardridge WM, editor. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vinores SA. 1995. Assessment of blood-retinal barrier integrity. Histol Histopath 10: 141–154.

    CAS  Google Scholar 

  • Wenkel H, Streilein JW. 2000. Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Invest Ophthalmol Vis Sci 2000 Oct 41(11): 3467–3473, 41: 3467–3473.

    CAS  Google Scholar 

  • Wolburg H, Liebner S, Reichenbach A, Gerhardt H. 1999. The pecten oculi of the chicken: A model system for vascular differentiation and barrier maturation. Int Rev Cytol 187: 111–159.

    CAS  PubMed  Google Scholar 

  • Wolfensberger TJ. 1998. Toxicology of the retinal pigment epithelium. The Retinal Pigment Epithelium. Wolfensberger TJ, editor. Oxford: Oxford University Press; pp. 621–647.

    Google Scholar 

  • Wong V, Gumbiner BM. 1997. A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136(2): 399–409.

    CAS  PubMed  Google Scholar 

  • Wu DT, Woodman SE, Weiss JM, McManus CM, D'Aversa TG, et al. 2000. Mechanisms of leukocyte trafficking into the CNS. J Neurovirol 6 (Suppl. 1): S82–S85.

    CAS  PubMed  Google Scholar 

  • Wu GS, Rao NA. 1996. A novel retinal pigment epithelial protein suppresses neutrophil superoxide generation. I. Characterization of the suppressive factor. Exp Eye Res 63: 713–725.

    CAS  PubMed  Google Scholar 

  • Xu H, Forrester JV, Liversidge J, Crane IJ. 2003. Leukocyte trafficking in experimental autoimmune uveitis: Breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Invest Ophthalmol Vis Sci 44(1): 226–234.

    PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, et al. 2000. Vascular-specific growth factors and blood vessel formation. Nature 407(6801): 242–248.

    CAS  PubMed  Google Scholar 

  • Zauberman H. 1979. Adhesive forces between the retinal pigment epithelium and sensory retina. The Retinal Pigment Epithelium. Marmor MF, editor. Cambridge, Massachusetts and London, England: Harvard University Press; pp. 192–204.

    Google Scholar 

  • Zhao S, Rizzolo LJ, Barnstable CJ. 1997. Differentiation and transdifferentiation of the retinal pigment epithelium. Int Rev Cytol 171: 225–266.

    CAS  PubMed  Google Scholar 

  • Zinn KM, Benjamin-Henkind JV. 1979. Anatomy of the human retinal pigment epithelium. The Retinal Pigment Epithelium. Marmor MF, editor. Cambridge, Massachusetts and London, England: Harvard University Press; pp. 3–31.

    Google Scholar 

Download references

Acknowledgments

I am grateful to Drs. Konrad Kohler (Tübingen, Germany) and Marteen Reith (New York, USA) for critical reading of the manuscript.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Schlosshauer, B. (2007). Blood–Retina Barriers. In: Lajtha, A., Reith, M.E.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30380-2_24

Download citation

Publish with us

Policies and ethics