Skip to main content

Calcium Signaling during Phagocytosis

  • Chapter
Molecular Mechanisms of Phagocytosis

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 827 Accesses

Abstract

Phagocytosis is important for a wide diversity of organisms. From simple unicellular organisms that use phagocytosis to eat, to complex metazoans in which phagocytic cells represent an essential branch of the immune system. Evolution has armed cells with a fantastic repertoire of molecules that serve to bring about this complex event regardless of the organism or specific molecules concerned. However, all phagocytic processes are driven by a finely controlled rearrangement of the actin cytoskeleton where calcium (Ca2+) signals play important roles. Ca2+ plays many roles in cytoskeletal changes by affecting the actions of a number of contractile proteins, as well as being a cofactor for the activation of a number of intracellular signaling proteins, known to play important roles during phagocytosis. In the mammalian immune system, the requirement of Ca2+ for the initial steps in phagocytosis, and the subsequent phagosome maturation, can be quite different depending on the type of cell and on the type of receptor that is driving phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metchnikoff E. Sur la lutte des cellules de l’organisme contre l’invasion des microbes. Ann Inst Pasteur 1887; 1:321–345.

    Google Scholar 

  2. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17:593–623.

    PubMed  CAS  Google Scholar 

  3. Cardelli J. Phagocytosis and micropinocytosis in Dictyostelium: Phosphoinositidebased processes, biochemically distinct. Traffick 2001; 2:311–320.

    CAS  Google Scholar 

  4. Franc NC, White K, Ezekowitz RA. Phagocytosis and development: Back to the future. Curr Opin Immunol 1999; 11:47–52.

    PubMed  CAS  Google Scholar 

  5. Tan Z, Boss WF. Association of phosphatidylinositol kinase, phosphatidylinositol monophosphate kinase, and diacylglycerol kinase with the cytoskeleton and F-actin fractions of carrot (Daucus carota L.) cells grown in suspension culture. Plant Physiol 1992; 100:2116–2120.

    PubMed  CAS  Google Scholar 

  6. Yamamoto K, Pardee JD, Reidler J et al. Mechanism of interaction of Dictyostelium severin with actin filaments. J Cell Biol 1982; 95:711–719.

    PubMed  CAS  Google Scholar 

  7. Witke W, Hofmann A, Koppel B et al. The Ca2+-binding domains in nonmuscle type alpha-actinin: Biochemical and genetic analysis. J Cell Biol 1993; 121:599–606.

    PubMed  CAS  Google Scholar 

  8. Fechheimer M, Taylor DL. Isolation and characterization of a 30,000-dalton calcium-sensitive actin cross-linking protein from Dictyostelium discoideum. J Biol Chem 1984; 259:4514–4520.

    PubMed  CAS  Google Scholar 

  9. Doring V, Veretout F, Albrecht R et al. The in vivo role of annexin VII (synexin)-characterization of an annexin VII deficient Dictyostelium mutant indicates an involvement in calcium-regulated processes. J Cell Sci 1995; 108:2065–2076.

    PubMed  Google Scholar 

  10. Zhu Q, Liu T, Clarke M. Calmodulin and the contractile vacuole complex in mitotic cells of Dictyostelium discoideum. J Cell Sci 1993; 104:1119–1127.

    PubMed  CAS  Google Scholar 

  11. Dharamsi A, Tessarolo D, Coukell B et al. CBP1 associates with the Dictyostelium cytoskeleton and is important for normal cell aggregation under certain developmental conditions. Exp Cell Res 2000; 258:298–309.

    PubMed  CAS  Google Scholar 

  12. Huttenlocher A, Palecek SP, Lu Q et al. Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 1997; 272:32719–32722.

    PubMed  CAS  Google Scholar 

  13. Rabinovitch M. Professional and nonprofessional phagocytes: An introduction. Trends Cell Biol 1995; 5:85–87.

    PubMed  CAS  Google Scholar 

  14. Kwiatkowska K, Sobota A. Signaling pathways in phagocytosis. BioEssays 1999; 21:422–431.

    PubMed  CAS  Google Scholar 

  15. Indik ZK, Park JG, Hunter S et al. The molecular dissection of Fcγ receptor mediated phagocytosis. Blood 1995; 86:4389–4399.

    PubMed  CAS  Google Scholar 

  16. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92:3007–3017.

    PubMed  CAS  Google Scholar 

  17. Malik ZA, Denning GM, Kusner DJ. Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J Exp Med 2000; 191:287–302.

    PubMed  CAS  Google Scholar 

  18. Ofek I, Goldhar J, Keisari Y et al. Nonopsonic phagocytosis of microorganisms. Annu Rev Microbiol 1995; 49:239–276.

    PubMed  CAS  Google Scholar 

  19. Schutt C. Fighting infection: The role of lipopolysaccharide binding proteins CD14 and LBP. Pathobiology 1999; 67:227–229.

    PubMed  CAS  Google Scholar 

  20. In: Roitt IM, ed. The basis of immunology. Essential Immunology. Oxford: Blackwell Scientific, 1994.

    Google Scholar 

  21. van Egmond MH, Hanneke van Vuuren AJ, van de Winkel JG. The human Fc receptor for IgA (FcαRI, CD89) on transgenic peritoneal macrophages triggers phagocytosis and tumor cell lysis. Immunol Lett 1999; 68:83–87.

    PubMed  Google Scholar 

  22. Yokota A, Yukawa K, Yamamoto A et al. Two forms of the low affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: Identification of the critical cytoplasmic domains. Proc Nat Acad Sci USA 1992; 89:5030–5034.

    PubMed  CAS  Google Scholar 

  23. Sanchez-Mejorada G, Rosales C. Signal transduction by immunoglobulin Fc receptors. J Leuk Biol 1998; 63:521–533.

    CAS  Google Scholar 

  24. Indik ZK, Hunter S, Huang MM et al. The high affinity Fc gamma receptor (CD64) induces phagocytosis in the absence of its cytoplasmic domain: The gamma subunit of Fc gamma RIIIA imparts phagocytic function to Fc gamma RI. Exp Hematol 1994; 22:599–606.

    PubMed  CAS  Google Scholar 

  25. Tuijnman WB, Capel PJ, van de Winkel JG. Human low affinity IgG receptor Fc gamma Rlla (CD32) introduced into mouse fibroblasts mediates phagocytosis of sensitized erythrocytes. Blood 1992; 79:1651–1656.

    PubMed  CAS  Google Scholar 

  26. Park JG, Isaacs RE, Chien P et al. In the absence of other Fc receptors, Fc gamma RIIIA transmits a phagocytic signal that requires the cytoplasmic domain of its gamma subunit. J Clin Invest 1993; 92:1967–1973.

    PubMed  CAS  Google Scholar 

  27. Indik ZK, Pan XQ, Huang MM et al. Insertion of cytoplasmic tyrosine sequences into the nonphagocytic receptor Fc gamma RIIB establishes phagocytic function. Blood 1994; 83:2072–2080.

    PubMed  CAS  Google Scholar 

  28. Kimberly RP, Ahlstrom JW, Click ME et al. The glycosyl phosphatidylinositol-linked Fc gamma RIIIPMN mediates transmembrane signaling events distinct from Fc gamma RII. J Exp Med 1990; 171:1239–1255.

    PubMed  CAS  Google Scholar 

  29. Salmon JE, Brogle EJ, Edberg JC et al. Fcgamma receptor III induces actin polymerization in human neutrophils and primes phagocytosis mediated by Fcgamma receptor II. J Immunol 1991; 146:997–1004.

    PubMed  CAS  Google Scholar 

  30. Chuang FY, Sassaroli M, Unkeless JC. Convergence of Fc-gamma receptor IIA and Fc gamma receptor IIIB signaling pathways in human neutrophils. J Immunol 2000; 164:350–360.

    PubMed  CAS  Google Scholar 

  31. Garcia-Garcia E, Rosales C. Signal transduction during Fc receptor-mediated phagocytosis. J Leuk Biol 2002; 72:1092–1108.

    CAS  Google Scholar 

  32. Smith LC, Azumi K, Nonaka M. Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology 1999; 42:107–120.

    PubMed  CAS  Google Scholar 

  33. Ravetch JV, Clynes RA. Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 1998; 16:421–432.

    PubMed  CAS  Google Scholar 

  34. Brown EJ. Complement receptors and phagocytosis. Curr Opin Immunol 1991; 3:76–82.

    PubMed  CAS  Google Scholar 

  35. Diamond MS, Garcia-Aguilar J, Bickford J et al. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 1993; 120:1031–1043.

    PubMed  CAS  Google Scholar 

  36. Brown EJ. The role of extracellular matrix proteins in the control of phagocytosis. J Leuk Biol 1986; 39:579–591.

    CAS  Google Scholar 

  37. Pommier CG, Inada S, Fries LF et al. Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J Exp Med 1983; 157:1844–1854.

    PubMed  CAS  Google Scholar 

  38. Oxvig C, Lu C, Springer TA. Conformational changes in tertiary structure near the ligand binding site of an integrin I domain. Proc Nat Acad Sci USA 1999; 96:2215–2220.

    PubMed  CAS  Google Scholar 

  39. Chatila TA, Geha RS, Arnaout MA. Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules. J Cell Biol 1989; 109:3435–3444.

    PubMed  CAS  Google Scholar 

  40. Detmers PA, Wright SD, Olsen E et al. Aggregation of complement receptors on human neutronphils in the absence of ligand. J Cell Biol 1987; 105:1137–1145.

    PubMed  CAS  Google Scholar 

  41. Allen LA, Aderem A. Mechanisms of phagocytosis. Curr Opin Immunol 1996; 8:36–40.

    PubMed  CAS  Google Scholar 

  42. Blystone SD, Graham IL, Lindberg FP et al. Integrin alpha v beta 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor alpha 5 beta 1. J Cell Biol 1994; 127:1129–1137.

    PubMed  CAS  Google Scholar 

  43. Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998; 10:50–55.

    PubMed  CAS  Google Scholar 

  44. Devitt A, Moffatt OD, Raykundalia C et al. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 1998; 392:505–509.

    PubMed  CAS  Google Scholar 

  45. Platt N, da Silva RP, Gordon S. Recognizing death: The phagocytosis of apoptotic cells. Trends Cell Biol 1998; 8:365–372.

    PubMed  CAS  Google Scholar 

  46. Parnaik R, Raff MC, Scholes J. Differences between the clearance of apoptotic cells by professional and nonprofessional phagocytes. Curr Biol 2000; 10:857–860.

    PubMed  CAS  Google Scholar 

  47. Meagher LC, Savill JS, Baker A et al. Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. J Leuk Biol 1992; 52:269–273.

    CAS  Google Scholar 

  48. Fadok VA, Bratton DL, Konowal A et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998; 101:890–898.

    PubMed  CAS  Google Scholar 

  49. Voll RE, Herrmann M, Roth EA et al. Immunosuppressive effects of apoptotic cells. Nature 1997; 390:350–351.

    PubMed  CAS  Google Scholar 

  50. Savill J. Apoptosis. Phagocytic docking without shocking. Nature 1998; 392:442–443.

    PubMed  CAS  Google Scholar 

  51. Fadok VA, Bratton DL, Rose DM et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405:85–90.

    PubMed  CAS  Google Scholar 

  52. Chung S, Gumienny TL, Hengartner MO et al. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biol 2000; 2:931–937.

    PubMed  CAS  Google Scholar 

  53. Roubey RA, Ross GD, Merrill JT et al. Staurosporine inhibits neutrophil phagocytosis but not iC3b binding mediated by CR3 (CD11b/CD18). J Immunol 1991; 146:3557–3562.

    PubMed  CAS  Google Scholar 

  54. Zhou Z, Hartwleg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 2001; 104:43–56.

    PubMed  CAS  Google Scholar 

  55. Kaplan G. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol 1977; 6:797–807.

    PubMed  CAS  Google Scholar 

  56. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1:11–21.

    PubMed  CAS  Google Scholar 

  57. Bootman MD, Berridge MJ, Roderick HL. Calcium signalling: More messengers, more channels, more complexity. Curr Biol 2002; 12:R563–R565.

    PubMed  CAS  Google Scholar 

  58. Bootman MD, Lipp P, Berridge MJ. The organisation and functions of local Ca2+ signals. J Cell Sci 2001; 114:2213–2222.

    PubMed  CAS  Google Scholar 

  59. Pryor PR, Mullock BM, Bright NA et al. The role of intraorganellar Ca2+ in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 2000; 149:1053–1062.

    PubMed  CAS  Google Scholar 

  60. Mao C, Kim SH, Almenoff JS et al. Molecular cloning and characterization of SCaMPER, a sphingoid Ca2+ release-mediating protein from endoplasmic reticulum. Proc Natl Acad Sci USA 1996; 93:1993–1996.

    PubMed  CAS  Google Scholar 

  61. Schnurbus R, De Pietri Tnelli D, Grohovas F et al. Reevaluation of primary structure, topology and localization of SCaMPER, a putative intracellular Ca2+ channel activated by sphingpsylphosphocholine. Biochem J 2002; 362:183–189.

    PubMed  CAS  Google Scholar 

  62. Berridge MD. Capacitative calcium entry. Biochem J 1995; 312:1–11.

    PubMed  CAS  Google Scholar 

  63. Cancela JM, van Coppenolle F, Galione A et al. Transformation of local Ca2+ spikes to global Ca2+ transients: The combinatioral roles of multiple Ca2+ releasing messengers. EMBO J 2002; 21:909–919.

    PubMed  CAS  Google Scholar 

  64. Mingen O, Thompson JL, Shuttleworth TJ. Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J Biol Chem 2001; 276:35676–35683.

    Google Scholar 

  65. Montell C. Physiology, phylogeny and functions of the TRP superfamily of cation channels. Science’s STKE 2001, http://stke.sciencemag.iorg/cgi/cx)ntent/full/OC_sigtrans, 2001/90/rel.

    Google Scholar 

  66. Yue LX, Peng JB, Hediger MA et al. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 2001; 410:705–709.

    PubMed  CAS  Google Scholar 

  67. Voets T, Prenen J, Fleig A et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 2001; 276:47767–47770.

    PubMed  CAS  Google Scholar 

  68. Tapper H. The secretion of preformed granules by macrophages and neutrophils. J Leukocyte Biol 1996; 59:613–622.

    PubMed  CAS  Google Scholar 

  69. Brumell JH, Volchuk A, Sengelov H et al. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments. J Immunol 1995; 155:5750–5759.

    PubMed  CAS  Google Scholar 

  70. Floto RA, Mahaut-Smith MP, Somasundaram B et al. IgG-induced Ca2+ oscillations in differentiated U937 cells; a study using laser scanning confocal microscopy and coloaded Fluo-3 and Fura-red fluorescent probes. Cell Calcium 1995; 18:377–389.

    PubMed  CAS  Google Scholar 

  71. Mandeville JT, Maxfield FR. Calcium and signal transduction in granulocytes. Curr Opin Hematol 1996; 3:63–70.

    PubMed  CAS  Google Scholar 

  72. Pryor PR, Mullock BM, Bright NA et al. The role of intraorganellar Ca2+ in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 2000; 149:1053–1062.

    PubMed  CAS  Google Scholar 

  73. Peters C, Mayer A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 1998; 396:575–580.

    PubMed  CAS  Google Scholar 

  74. Lundqvist-Gustafsson H, Gustafsson M, Dahlgren C. Dynamic Ca2+ changes in neutrophil phagosomes. A source for intracellular Ca2+ during phagolysosome formation?. Cell Calcium 2000; 27:353–362.

    PubMed  CAS  Google Scholar 

  75. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993; 361:315–325.

    PubMed  CAS  Google Scholar 

  76. Rosales C, Brown EJ. Signal transduction by neutrophil immunoglobulin G Fc receptors: Dissociation of intracytoplasmic calcium concentration rise from inositol 1,4,5,-trisphosphate. J Biol Chem 1992; 267:5265–5271.

    PubMed  CAS  Google Scholar 

  77. Choi OH, Kim JH, Kinet J-P. Calcium mobilization via sphingosine kinase in signaling by the FcεRI antigen receptor. Nature 1996; 380:634–636.

    PubMed  CAS  Google Scholar 

  78. Melendez AJ, Floto RA, Cameron AJ et al. A molecular switch changes the signalling pathway used by FcγRI antibody receptor to mobilise calcium. Curr Biol 1998; 8:210–221.

    PubMed  CAS  Google Scholar 

  79. Melendez A, Floto RA, Gillooly DJ et al. FcγRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. J Biol Chem 1998; 273:9393–9402.

    PubMed  CAS  Google Scholar 

  80. Melendez AJ, Bruetschy L, Floto RA et al. Functional coupling of FcγRI to nicotinamide dinucleotide phosphate (reduced form) oxidative burst and immune complex trafficking requires the activation of phospholipase D1. Blood 2001; 98:3421–3428.

    PubMed  CAS  Google Scholar 

  81. Melendez AJ, Khaw AK. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J Biol Chem 2002; 277:17255–17262.

    PubMed  CAS  Google Scholar 

  82. Rosales C, Jones SL, McCourt D et al. Bromophenacyl bromide binding to the actin-bundling protein 1-plastin inhibits inositol trisphosphate-independent increase in Ca2+ in human neutrophils. Proc Natl Acad Sci USA 1994; 91:3534–3538.

    PubMed  CAS  Google Scholar 

  83. Olivera A, Rosenthal J, Spiegel S. Effect of acidic phospholipids on sphingosine kinase. J Cell Biochem 1996; 60:529–537.

    PubMed  CAS  Google Scholar 

  84. Young JD, Ko SS, Cohn ZA. The increase in intracellular free calcium associated with IgG gamma 2b/gamma 1 Fc receptor-ligand interactions: Role in phagocytosis. Proc Nat Acad Sci USA 1984; 81:5430–5434.

    PubMed  CAS  Google Scholar 

  85. Kobayashi K, Takahashi K, Nagasawa S. The role of tyrosine phosphorylation and Ca2+ accumulation in Fc gamma-receptormediated phagocytosis of human neutrophils. J Biochem (Tokyo) 1995; 117:1156–1161.

    PubMed  CAS  Google Scholar 

  86. Della Bianca V, Grzeskowiak M, Rossi F. Studies on molecular regulation of phagocytosis and activation of the NADPH oxidase in neutrophils. IgG-and C3bmediated ingestion and associated respiratory burst independent of phospholipid turnover and Ca2+ transients. J Immunol 1990; 144:1411–1417.

    PubMed  Google Scholar 

  87. Lew DP, Andersson T, Hed J et al. Ca2+-dependent and Ca2+-independent phagocytosis in human neutrophils. Nature 1985; 315:509–511.

    PubMed  CAS  Google Scholar 

  88. Bengtsson T, Jaconi ME, Gustafson M et al. Actin dynamics in human neutrophils during adhesion and phagocytosis is controlled by changes in intracellular free calcium. Eur J Cell Biol 1993; 62:49–58.

    PubMed  CAS  Google Scholar 

  89. Jaconi ME, Lew DP, Carpentier JL et al. Cytosolic free calcium elevation mediates the phagosome lysosome fusion during phagocytosis in human neutrophils. J Cell Biol 1990; 110:1555–1564.

    PubMed  CAS  Google Scholar 

  90. Greenberg S, el Khoury J, di Virgilio F et al. Ca2+-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages. J Cell Biol 1991; 113:757–767.

    PubMed  CAS  Google Scholar 

  91. Zimmerli S, Majeed M, Gustavsson M et al. Phagosome-lysosome fusion is a calcium-independent event in macrophages. J Cell Biol 1996; 132:49–61.

    PubMed  CAS  Google Scholar 

  92. Edberg JC, Lin CT, Lau D et al. The Ca2+ dependence of human Fc gamma receptor-initiated phagocytosis. J Biol Chem 1995; 270:22301–22307.

    PubMed  CAS  Google Scholar 

  93. Stendahl O, Krause KH, Krischer J et al. Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science 1994; 265:1439–1441.

    PubMed  CAS  Google Scholar 

  94. Sawer DW, Sullivan JA, Mandell GL. Intracellular free calcium localization in neutrophils during phagocytosis. Science 1985; 230:663–666.

    Google Scholar 

  95. Bengtsson T, Jaconi ME, Gustafson M et al. Actin dynamics in human neutrophils during adhesion and phagocytosis is controlled by changes in intracellular free calcium. Eur J Cell Biol 1993; 62:49–58.

    PubMed  CAS  Google Scholar 

  96. Harris HE, Weeds AG. Plasma gelsolin caps and severs actin filaments. FEBS Lett 1984; 177:184–188.

    PubMed  CAS  Google Scholar 

  97. Yin HL, Albrecht JH, Fattoum A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol 1981; 91:901–906.

    PubMed  CAS  Google Scholar 

  98. Serrander L, Skarman P, Rasmussen B et al. Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. J Immunol 2000; 165:2451–2457.

    PubMed  CAS  Google Scholar 

  99. Allen LA, Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement-and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 1996; 184:627–637.

    PubMed  CAS  Google Scholar 

  100. Allen LH, Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 1995; 182:829–840.

    PubMed  CAS  Google Scholar 

  101. Larsen EC, DiGennaro JA, Saito N et al. Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol 2000; 165:2809–2817.

    PubMed  CAS  Google Scholar 

  102. Greenberg S, Chang P, Silverstein SC. Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J Exp Med 1993; 177:529–534.

    PubMed  CAS  Google Scholar 

  103. Zheleznyak A, Brown EJ. Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation. Evidence for protein kinase C translocation to phagosomes. J Biol Chem 1992; 267:12042–12048.

    PubMed  CAS  Google Scholar 

  104. Dekker LV, Leitges M, Altschuler G et al. Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochem J 2000; 347:285–289.

    PubMed  CAS  Google Scholar 

  105. Melendez AJ, Harnett MM, Allen JM. Differentiation dependent switch in protein kinase C isoenzyme activation by FcgammaRI, the human high-affinity receptor for immunoglobulin G. Immunology 1999; 96:457–464.

    PubMed  CAS  Google Scholar 

  106. Brumell JH, Howard JC, Craig K et al. Expression of the protein kinase C substrate pleckstrin in macrophages: Association with phagosomal membranes. J Immunol 1999; 163:3388–3395.

    PubMed  CAS  Google Scholar 

  107. Li J, Aderem A. MacMARCKS, a novel member of the MARCKS family of protein kinase C substrates. Cell 1992; 70:791–801.

    PubMed  CAS  Google Scholar 

  108. Hartwig JH, Thelen M, Rosen A et al. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calciumcalmodulin. Nature 1992; 356:618–622.

    PubMed  CAS  Google Scholar 

  109. Carballo E, Pitterle DM, Stumpo DJ et al. Phagocytic and macropinocytic activity in MARCKS-deficient macrophages and fibroblasts. Am J Physiol 1999; 277:C163–173.

    PubMed  CAS  Google Scholar 

  110. Underhill DM, Chen J, Allen LA et al. MacMARCKS is not essential for phagocytosis in macrophages. J Biol Chem 1998; 273:33619–33623.

    PubMed  CAS  Google Scholar 

  111. Zhu Z, Bao Z, Li J. MacMARCKS mutation blocks macrophage phagocytosis of zymosan. J Biol Chem 1995; 270:17652–17655.

    PubMed  CAS  Google Scholar 

  112. Colombo MI, Beron W, Stahl PD. Calmodulin regulates endosome fusion. J Biol Chem 1997; 272:7707–7712.

    PubMed  CAS  Google Scholar 

  113. Wickner W, Haas A. Yeast homotypic vacuole fusion: A window on organelle trafficking mechanisms. Annu Rev Biochem 2000; 69:247–275.

    PubMed  CAS  Google Scholar 

  114. Zimmerli S, Majeed M, Gustavsson M et al. Phagosome-lysosome fusion is a calcium-independent event in macrophages. J Cell Biol 1996; 132:49–61.

    PubMed  CAS  Google Scholar 

  115. Jaconi ME, Lew DP, Carpentier JL et al. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J Cell Biol 1990; 110:1555–1564.

    PubMed  CAS  Google Scholar 

  116. Downey GP, Botelho RJ, Butler JR et al. Phagosomal maturation, acidification, and inhibition of bacterial growth in nonphagocytic cells transfected with FcγRIIA receptors. J Biol Chem 1999; 274:28436–28444.

    PubMed  CAS  Google Scholar 

  117. Wilsson A, Lundqvist H, Gustafsson M et al. Killing of phagocytosed Staphylococcus aureus by human neutrophils requires intracellular free calcium. J Leuk Biol 1996; 59:902–907.

    CAS  Google Scholar 

  118. Jahraus A, Egeberg M, Hinner B et al. ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol Biol Cell 2001; 12:155–170.

    PubMed  CAS  Google Scholar 

  119. Ferrari G, Langen H, Naito M et al. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 1999; 97:435–447.

    PubMed  CAS  Google Scholar 

  120. Greenberg S, el Khoury J, di Virgilio F et al. Ca2+-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages. J Cell Biol 1991; 113:757–767.

    PubMed  CAS  Google Scholar 

  121. Ernst JD. Annexin III translocates to the periphagosomal region when neutrophils ingest opsonized yeast. J Immunol 1991; 146:3110–3114.

    PubMed  CAS  Google Scholar 

  122. Majeed M, Perskvist N, Ernst JD et al. Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb Pathog 1998; 24:309–320.

    PubMed  CAS  Google Scholar 

  123. Malik ZA, Iyer SS, Kusner DJ. Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: Contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol 2001; 166:3392–3401.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Melendez, A.J. (2005). Calcium Signaling during Phagocytosis. In: Molecular Mechanisms of Phagocytosis. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28669-3_9

Download citation

Publish with us

Policies and ethics