Skip to main content

Glycemic Goals

  • Chapter
  • First Online:
Principles of Diabetes Mellitus
  • 3966 Accesses

Abstract

Both type 1 and type 2 diabetes are accompanied by microvascular and macrovascular complications. For decades the association between chronic hyperglycemia and the development of long-term eye, kidney, and nerve disease was suspected based on animal models of diabetes 1–3 and the long-term observations of clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engerman R, Bloodworth JM, et al. Relationship of microvascular disease in diabetes to metabolic control. Diabetes. 1977;26:760–769.

    Article  PubMed  CAS  Google Scholar 

  2. Engerman RL, Kern TS. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes. 1987;36:808–812.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen AJ, McGill PD, Rosetti RG, Guberski DL, Like AA. Glomerulopathy in spontaneously diabetic rat: impact of glycemic control. Diabetes. 1987;36:944–951.

    Article  PubMed  CAS  Google Scholar 

  4. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care. 1978;38:252–261.

    Google Scholar 

  5. Ingelfinger FJ. Debates in diabetes. N Engl J Med. 1977;296:1228–1230.

    Article  PubMed  CAS  Google Scholar 

  6. Kroc Collaborative Study Group. Blood glucose control and the evolution of diabetic retinopathy and albuminuria. N Engl J Med. 1984;311:365–372.

    Article  Google Scholar 

  7. Dahl-Jorgensen K, Hanssen KF, Kierulf P, Bjoro T, Sandvik L, Aagenaes O. Reduction of urinary albumin excretion after 4 years of continuous subcutaneous insulin-infusion in insulin-dependent diabetes mellitus. Acta Endocrinologica. 1988;117:19–25.

    PubMed  CAS  Google Scholar 

  8. Lauritzen T, Frost-Larsen K, Larsen H-W, Deckert T. Steno Study Group. Effect of 1 year of near- normal blood glucose levels on retinopathy in insulin- dependent diabetes. Lancet. 1983;1:200–204.

    Article  PubMed  CAS  Google Scholar 

  9. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986.

    Article  Google Scholar 

  10. DCCT Research Group. The effects of intensive treatment of diabetes therapy on the development and progression of neuropathy. Ann Int Med. 1995;122:561–568.

    Google Scholar 

  11. DCCT Research Group. The effect of intensive diabetes therapy on measures of autonomic nervous system function in the DCCT. Diabetologia. 1998;41:416–423.

    Article  Google Scholar 

  12. Reichard P, Nilsson BY, Rosenquist U. The effect of long term intensified treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993;329:304–309.

    Article  PubMed  CAS  Google Scholar 

  13. Implications of the Diabetes Control and Complications Trial. American Diabetes Association Position Statement. Diabetes Spectrum. 1993;6:225–227.

    Google Scholar 

  14. Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA. 1988;260:2864–2871.

    Article  PubMed  CAS  Google Scholar 

  15. Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: X. Four year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch Opthalmol. 1989;107:244–249.

    CAS  Google Scholar 

  16. Lasker RD. DCCT: implications for policy and practice. N Engl J Med. 1993;329:1035–1036.

    Article  PubMed  CAS  Google Scholar 

  17. Nathan DM. Inferences and implications. Do results from the DCCT apply in NIDDM? Diabetes Care. 1995;18:251–257.

    PubMed  CAS  Google Scholar 

  18. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75:473–486.

    PubMed  CAS  Google Scholar 

  19. Balkau B, Eschwege E, Papoz L, et al. Risk factors for early death in non-insulin-dependent diabetes and men with known glucose tolerance status. Br Med J. 1993;307:295–298.

    Article  CAS  Google Scholar 

  20. Hsueh WA, Law RE. Cardiovascular risk continuum: implications of insulin resistance and diabetes. Am J Med. 1998;105(1A):4S-14S.

    Article  PubMed  CAS  Google Scholar 

  21. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus. Diab Res Clin Prac. 1995;28:103–117.

    Article  CAS  Google Scholar 

  22. DCCT Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the DCCT. Diabetes. 1995;44:968–983.

    Article  Google Scholar 

  23. Krolewski AS, Laffel LMB, Krolewski M, Quinn M, Warram JH. Glycosylated hemoglobin and the risk of microalbuminuria inpatients with insulin-dependent diabetes mellitus. N Engl J Med. 1995;332:1251–1255.

    Article  PubMed  CAS  Google Scholar 

  24. Warram JH, Manson JE, Krolewski AS. Glycosylated hemoglobin and the risk of retinopathy in insulin-dependent diabetes. N Engl J Med. 1995;332:1305–1306.

    Article  PubMed  CAS  Google Scholar 

  25. DCCT Research Group. The absence of a glycemic threshold for the development of long- term complications: The perspective of the DCCT. Diabetes. 1996;45:1289–1298.

    Article  Google Scholar 

  26. DCCT Research Group, Klein R, Moss S. A comparison of the study populations in the DCCT and the WESDR. Arch Int Med. 1995;155:745–754.

    Article  CAS  Google Scholar 

  27. EDIC Research Group. EDIC: design, implementation and preliminary results of a long-term follow-up of the DCCT cohort. Diabetes Care. 1999;22:99–111.

    Article  Google Scholar 

  28. DCCT/EDIC Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342:381–389.

    Article  Google Scholar 

  29. DCCT/EDIC Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes. JAMA. 2002;287:2563–2569.

    Article  Google Scholar 

  30. DCCT/EDIC Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy. JAMA. 2003;290:2159–2167.

    Article  Google Scholar 

  31. Genuth S, Sun W, Cleary P, et al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the Diabetes Control and Complications Trial and Epidemiology of Diabetes Intervention and Complications participants with type 1 diabetes. Diabetes. 2005;54:3103–3111.

    Article  PubMed  CAS  Google Scholar 

  32. Geiss S, Herman WH, Smith PJ. Mortality in non-insulin-dependent diabetes. In: Harris M, ed. Diabetes in America. 2nd ed. Bethesda, MD: National Institutes of Health (NIH publ.No 95-1468); 1995:133–155.

    Google Scholar 

  33. Krolewski AS, Kosinski EJ, Warram JH, et al. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol. 1987;59:750–755.

    Article  PubMed  CAS  Google Scholar 

  34. Laing SP, Swerdlow AJ, Slater SD, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 2003;46:760–765.

    Article  PubMed  CAS  Google Scholar 

  35. Thom T, Haase N, Rosamond W, et al. for the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113: e85–e151; 2006

    Article  PubMed  Google Scholar 

  36. Niskanen L, Turpeinen A, Pentilla I, Uusitupa MI. Hyperglycemia and compositional lipoprotein abnormalities as predictors of cardiovascular mortality in type 2 diabetes: a 15 year follow-up from the time of diagnosis. Diabetes Care. 1998;21:1861–1869.

    Article  PubMed  CAS  Google Scholar 

  37. Wei M, Gaskill SP, Haffner SM, Stern MP. Effects of diabetes and level of glycemia on all cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care. 1998;21:1167–1172.

    Article  PubMed  CAS  Google Scholar 

  38. Lehto S, Ronnemma T, Pyorala K, Laakso M. Poor glycemic control predicts coronary heart disease events in patients with type 1 diabetes without nephropathy. Arterioscler Thromb Vasc Biol. 1999;19:1014–1019.

    Article  PubMed  CAS  Google Scholar 

  39. Selvin E, Marinopoulos S, Berkenblit G, et al. Met-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Int Med. 2004;141:421–431.

    PubMed  CAS  Google Scholar 

  40. Barrett-Connor E. Does hyperglycemia really cause coronary heart disease? Diabetes Care. 1997;20:1620–1622.

    PubMed  CAS  Google Scholar 

  41. Orchard TJ, Olson JC, Erbey JR, et al. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10 year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care. 2003;26:1374–1379.

    Article  PubMed  Google Scholar 

  42. DCCT Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the DCCT. Am J Cardiol. 1995;75:894–903.

    Article  Google Scholar 

  43. Burke GL, Evans GW, Riley WA, et al. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Stroke. 1995;26:386–391.

    Article  PubMed  CAS  Google Scholar 

  44. DCCT/EDIC Research Group. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med. 2003;348:2294–2303.

    Article  Google Scholar 

  45. DCCT/EDIC Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;355:2643–2652.

    Google Scholar 

  46. UKPDS Group. Intensive blood glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–853.

    Article  Google Scholar 

  47. Stratton IM, Adler AI, Neil HA, et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ. 2000;321:405–412.

    Article  PubMed  CAS  Google Scholar 

  48. UKPDS Group. Effect of intensive blood glucose control with metformin complications on in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–865.

    Article  Google Scholar 

  49. Malmberg K, Ryden L, Efendic S, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol. 1995;26:57–65.

    Article  PubMed  CAS  Google Scholar 

  50. Malmberg K, Ryden L, Wedel H, et al. for the DIGAMI 2 investigators. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J. 2005;26:650–661.

    Article  PubMed  CAS  Google Scholar 

  51. Abraira C, Colwell J, Nuttall F, et al. Cardiovascular events and correlates in the veterans affairs diabetes feasibility trial. Arch Int Med. 1997;157:181–188.

    Article  CAS  Google Scholar 

  52. Balkau B, Shipley M, Jarrett RJ, Pyorala M, Forhan A, Eschwege E. High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men: 20 year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care. 1998;21:360–367.

    Article  PubMed  CAS  Google Scholar 

  53. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events: a meta-regression analysis of published data form 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999;22:233–240.

    Article  PubMed  CAS  Google Scholar 

  54. Khaw KT, Wareham N, Bingham S, Luben R, Welch A, Day N. Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Int Med. 2004;141:413–420.

    PubMed  CAS  Google Scholar 

  55. The ACCORD Study Group. Action to control cardiovascular risk in diabetes (ACCORD) trial: design and methods. Am J Cardiol. 2007;99:21i-33i.

    Google Scholar 

  56. Bakris GL. The importance of blood pressure control in the patient with diabetes. Am J Med. 2004;116(S5A):S30–S38.

    Article  Google Scholar 

  57. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet. 2003;361:2005–2016.

    Article  Google Scholar 

  58. Colhoun HM, Betteridge DJ, Durrington PM, et al. for the CARDS investigators. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multi-centre randomized placebo-controlled trial. Lancet. 2004;364:685–696.

    Article  PubMed  CAS  Google Scholar 

  59. Cryer P. Hypoglycemia: the rate limiting factor in the glycaemic management of type I and type II diabetes. Diabetologia. 2002;456:937–948.

    Google Scholar 

  60. DCCT Research Group. Hypoglycemia in the DCCT. Diabetes. 1997;46:271–286.

    Article  Google Scholar 

  61. DCCT Research Group. Effects of intensive diabetes therapy in neuropsychological function in adults in the DCCT. Ann Int Med. 1996;124:379–388.

    Google Scholar 

  62. Jacobson AM, Musen G, Ryan CM, et al. Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med. 2007;356:1842–1852.

    Article  PubMed  Google Scholar 

  63. Amiel SA, Tamborlane WV, Simonson DC, Sherwin RS. Defective glucose counteregulation after strict glycemic control of insulin-independent diabetes mellitus. N Engl J Med. 1987;316:1376–1383.

    Article  PubMed  CAS  Google Scholar 

  64. Kinsley BT, Windom B, Simonson DS. Differential regulation of counter-regulatory hormone secretion and symptoms during hypoglycemia in IDDM. Diabetes Care. 1995;18:17–26.

    Article  PubMed  CAS  Google Scholar 

  65. Levy CJ, Kinsley BT, Bajaj M, Simonson DS. Effect of glycemic control on glucose counter-regulation during hypoglycemia in NIDDM. Diabetes Care. 1998;21:1330–1338.

    Article  PubMed  CAS  Google Scholar 

  66. DCCT Research Group. Adverse events and their association with treatment regimens in the diabetes control and complications trial. Diabetes Care. 1995;18:1415–1427.

    Article  Google Scholar 

  67. DCCT Research Group. Influence of intensive diabetes treatment on body weight and composition of adults with type 1 diabetes in the diabetes control and complications trial. Diabetes Care. 2001;24:1711–1721.

    Article  Google Scholar 

  68. Purnell JQ, Dev RK, Steffes MW, et al. Relationship of family history of type 2 diabetes, hypoglycemia and autoantibodies to weight gain and lipids with intensive and conventional therapy in the diabetes control and complications trial. Diabetes. 2003;52:2623–2629.

    Article  PubMed  CAS  Google Scholar 

  69. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 1999;131:281–303.

    PubMed  CAS  Google Scholar 

  70. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2425–2471.

    Google Scholar 

  71. Singh S, Loke YK, Furberg CD. Thiazolidinediones and heart failure: a teleo-analysis. Diabetes Care. 2007;30:2148–2153 May 29, 2007 Epub.

    Article  PubMed  CAS  Google Scholar 

  72. Abraira C, Maki KC. Does insulin treatment increase cardiovascular risk in NIDDM? Clin Diabetes. 1995;13:29–31.

    Google Scholar 

  73. Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocrine Rev. 2006;27:242–259.

    Article  CAS  Google Scholar 

  74. The DECODE Study Group, the European Diabetes Epidemiology Group. Glucose intolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet. 1999;354:617–621.

    Article  Google Scholar 

  75. Balkau B, Shipley M, Jarrett RJ, et al. High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men: 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care. 1998;22:360–367.

    Article  Google Scholar 

  76. Hanefeld M, Fischer S, Julius U, et al. the DIS Group. Risk factors for myocardial infarction and death in newly detected NIDDM: the diabetes intervention study, 11 year follow-up. Diabetologia. 1996;39:1577–1583.

    Article  PubMed  CAS  Google Scholar 

  77. Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fueker K, Hanefeld M. Post challenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care. 2000;23:1830–1834.

    Article  PubMed  CAS  Google Scholar 

  78. Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laasko M. The Stop NIDDM Trial. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance. JAMA. 2003;290:486–494.

    Article  PubMed  CAS  Google Scholar 

  79. Esposito K, Giugliano D, Nappo F, Marfella R. the Campanian Postprandial Hyperglycemia Study Group. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. 2004;110:214–219.

    Article  PubMed  CAS  Google Scholar 

  80. Ceriello A. Postprandial hyperglycemia and diabetes complications. Diabetes. 2005;54:1–7.

    Article  PubMed  CAS  Google Scholar 

  81. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–1687.

    Article  PubMed  CAS  Google Scholar 

  82. Service FJ, O’Brien PC. The relation of glycemia to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetologia. 2001;44:1215–1220.

    Article  PubMed  CAS  Google Scholar 

  83. McCarter RJ, Hempe JM, Chalew SA. Mean blood glucose and biological variation have greater influence on HbA1c levels than glucose instability. Diabetes Care. 2006;29:352–355.

    Article  PubMed  Google Scholar 

  84. Kilpatrick ES, Rigby A, Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care. 2006;29:1486–1490.

    Article  PubMed  CAS  Google Scholar 

  85. American Diabetes Association. Postprandial blood glucose. Diabetes Care. 2001;24:775–778.

    Article  Google Scholar 

  86. American Diabetes Association. Standards of medical care in diabetes-2008. Diabetes Care. 2008;31(S1):S16–S24.

    Google Scholar 

  87. American Association of Clinical Endocrinologists. Medical guidelines for clinical practice for the management of diabetes mellitus. Endocrine Practice. 2007;13(S1):16.

    Google Scholar 

  88. El-Kebbi IM, Zeimer DC, Cook C, Miller CD, Gallina DL, Phillips LS. Comorbidity and glycemic control in patients with type 2 diabetes. Arch Int Med. 2001;161:1295–1300.

    Article  CAS  Google Scholar 

  89. Gaede P, Veldel P, Larsen N, Jensen GVH, Parving H-H, Pederson O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–393.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Brillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brillon, D.J. (2010). Glycemic Goals. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_39

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics