Skip to main content

Diazotrophic Bacterial Endophytes in Gramineae and Other Plants

  • Chapter
  • First Online:
Prokaryotic Symbionts in Plants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 8))

Abstract

Almost every plant has endophytic bacteria, which do not cause any harm to the plant, but may exert supportive effects on plant development and health. Diazotrophic bacteria were found to reside in roots, stems, and leaves of Gramineae (e.g., sugarcane, rice, maize, wheat, Miscanthus, and Pennisetum) and other plants (e.g., coffee, sweet potato, pineapple, banana). Gluconacetobacter diazotrophicus is a typical endophytic diazotroph in sugarcane roots, stems, and leaves, where its plant growth promotion is supposedly based on a combination of nitrogen fixation and phytohormonal effect. Several Rhizobia were shown to colonize gramineous plants (rice, wheat, maize) endophytically which are grown in rotation or as mixed cultivation with legumes. They exert plant growth promoting effects in their non-leguminous hosts. Some Azospirillum strains are able to colonize the root cortex of Gramineae and other plants and act as plant growth promoting agents mostly via phytohormonal stimulation of root development and activity. Herbaspirillum seropedicae is residing inside the roots and stems of sugarcane, rice, sweet potato, and other plants. It has been shown to exert plant growth promotion and nitrogen fixation in planta. Azoarcus sp. BH72 and other species are endophytes of Kallar grass (Leptochloa fusca), a halophyte in Pakistan, and also of different rice species. They colonize the aerenchyma of roots, are able to fix nitrogen in planta, and may turn to a non-culturable state inside the host plant. Several diazotrophic Burkholderia species, B. tropica, B. unamae, and B. brasilensis were described as endophytes of sugarcane, rice, maize, and teosinte plants. Most interestingly, three quite closely related Burkholderia species (B. phymatum, B. tuberum and B. mimosum) are able to form nodules in legumes (e.g., Mimosa spp.) and fix nitrogen in a symbiotic state like Rhizobia. Among the gamma-proteobacteria, Klebsiella pneumoniae 342 and Pseudomonas stutzeri A1501 were identified as effective and systemic endophytes of maize and rice, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Ashbolt NJ, Inkerman PA (1990) Acetic acid bacterial biota of the pink sugar cane mealybug, Saccharococcus sacchari, and its environs. Appl Environ Microbiol 56:707–712

    PubMed  CAS  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In Situ Localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    PubMed  CAS  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a new root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    CAS  Google Scholar 

  • Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VL, Olivares FL, Hoste B, Kersters K, Hartmann A, Gillis M, Döbereiner J (1996) Emended description of Herbaspirillum; inclusion of Pseudomonas rubrisubalbicans, a milk plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int J Syst Bacteriol 46:802–810

    PubMed  CAS  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    CAS  Google Scholar 

  • Bashan Y, Levanony H (1988) Interaction between Azospirillum brasilense Cd and wheat root cells during early stages of root colonization. In: Klingmüller W (ed) Azospirillum IV. Springer, Berlin, Germany, pp 166–173

    Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology. Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–607

    CAS  Google Scholar 

  • Becking JH (1963) Fixation of molecular nitrogen by an aerobic vibrio or spirillum. Antonie van Leeuwenhoeck 29:326

    Google Scholar 

  • Becking JH (1982) Azospirillum lipoferum, a reappraisal. In: Klingmüller W (ed) Azospirillum, genetics, physiology, ecology, vol Experientia Suppl. 42. Birkhäuser Verlag, Basel, Switzerland, pp 130–149

    Google Scholar 

  • Beijerinck MW (1925) Über ein Spirillum, welches freien Stickstoff binden kann? Zentralbl Bakteriol II Abt. 63:353–357

    Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    PubMed  CAS  Google Scholar 

  • Bloemberg GV, Camacho Carvajal MM (2006) Microbial interactions with plants: A hidden world? In: Schulz B, Boyle C, Sieber TN (eds) Microbial Root Endophytes/Soil Biology, vol. 9. Springer, Berlin, Heidelberg, pp 321–336

    Google Scholar 

  • Boddey RM, Chalk PM, Victoria RL, Matsui E, Döbereiner J (1983) The use of 15 N iusotope dilution technique to estimate the contribution of associated nitrogen fixation nutrition of Paspalum notatum cv. Batatais. Can J Microbiol 29:1036–1045

    Google Scholar 

  • Boddey RM (1995) Biological nitrogen fixation in sugar cane: A key to energetically viable biofuel production. Crit Rev Plant Sci 14:263–279

    Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15 N natural abundance technique for the quantification of the contribution of N2 fixataion to sugar cane and other grasses. Austr J Plant Physiol 28:889–895

    Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis VM (2003) Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications. Plant Soil 252:139–149

    CAS  Google Scholar 

  • Caballero-Mellado J, Martinez-Aguilar L, Paredes-Valdez G, Santos PE (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    PubMed  CAS  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787

    PubMed  CAS  Google Scholar 

  • Chen W-M, James EK, Coenye T, Chou J-H, Barrios E, de Faria SM, Elliott GN, Sheu S-Y, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851

    PubMed  CAS  Google Scholar 

  • Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant-Microbe Int 16:1051–1061

    CAS  Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic Rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    PubMed  CAS  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus scindicus Henrard, a perennial grass of Thar desert, India. Microb Ecol (in press)

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    PubMed  CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    PubMed  Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    PubMed  CAS  Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    CAS  PubMed  Google Scholar 

  • Dazzo FB, Yanni YG (2006) The natural Rhizobium – cereal crop association as an example of plant-bacteria interaction. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P (eds) Biological Approaches to Sustainable Soil Systems. Taylor & Francis Group, CRC Press, London, pp 109–126

    Google Scholar 

  • Desnoues N, Lin M, Guo X, Ma L, Carreno-Lopez R, Elmerich C (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiol Ecol 149:2251–2262

    CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Amber T, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Shimon B, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Austr J Plant Physiol 28:871–879

    Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth-promoting effect and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, The Netherlands, pp 145–170

    Google Scholar 

  • Döbereiner J, Day JM (1976) Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the 1st international symposium on nitrogen fixation. Washington State University Press, Pullman, WA, pp 518–538

    Google Scholar 

  • Döbereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Döbereiner J, Reis VM, Paula MA, Olivares F (1993) Endophytic diazotrophs in sugar cane, cereal and tuber plants. In: Palacios R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 671–676

    Google Scholar 

  • Dong Y, Chelius MK, Brisse S, Kozyrovska N, Kovtunovych G, Podschun R, Triplett EW (2003a) Comparisons between two Klebsiella: The plant endophyte K. pneumoniae 342 and a clinical isolate K. pneumoniae MGH78578. Symbiosis 35:247–259

    Google Scholar 

  • Dong Y, Iniguez AL, Ahmer BM, Triplett EW (2003b) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790

    PubMed  CAS  Google Scholar 

  • Dong Y, Iniguez AL, Triplett EW (2003c) Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49–59

    CAS  Google Scholar 

  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte of sugarcane stems (A new role for the apoplast). Plant Physiol 105:1139–1147

    PubMed  CAS  Google Scholar 

  • Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17

    PubMed  Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26

    PubMed  CAS  Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B (1998) Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant-Microbe Int 11:71–75

    CAS  Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B (1999) Endophytic expression of nif genes of Azoarcus sp. strain BH72 in rice roots. Mol Plant-Microbe Int 12:813–819

    CAS  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    PubMed  CAS  Google Scholar 

  • Elliott GN, Chen W-M, Chou J-H, Wang H-C, Sheu S-Y, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180

    PubMed  CAS  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    PubMed  CAS  Google Scholar 

  • Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    PubMed  CAS  Google Scholar 

  • Fu H, Burris RH (1989) Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae. J Bacteriol 171:3168–3175

    PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154:145–150

    CAS  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J, Sepulveda J, Martinez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128

    CAS  Google Scholar 

  • Fuentes-Ramirez LE, Bustillos-Cristales R, Tapia-Hernandez A, Jimenez-Salgado T, Wang ET, Martinez-Romero E, Caballero-Mellado J (2001a) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Bustillos-Cristales R, Tapia-Hernandez A, Jimenez-Salgado T, Wang ET, Martinez-Romero E, Caballero-Mellado J (2001b) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    PubMed  CAS  Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssens D, Koppenstedt RM, Stephan MP, Teixeira KRS, Döbereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugar cane. Int J Syst Bacteriol 39:361–364

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    PubMed  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145

    CAS  Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Microbial Root Endophytes/Soil Biology, vol. 9. Springer, Berlin, Heidelberg, pp 15–31

    Google Scholar 

  • Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz B, Boyle C, Sieber TN (eds) Microbial Root Endophytes/Soil Biology, vol. 9. Springer, Berlin, Heidelberg, pp 299–319

    Google Scholar 

  • Hartmann A, Baldani JI, Kirchhof G, Aßmus B, Hutzler P, Springer N, Ludwig W, Baldani VLD, Döbereiner J (1995) Taxonomic and ecoligic studies of diazotrophic rhizospere bacteria using phylogenetic probes. In: Fendrik I (ed) Azospirillum VI and related organisms. NATO ASI Series, vol. G 37. Springer, Berlin, Heidelberg, Germany, pp 415–427

    Google Scholar 

  • Hartmann A, Baldani JI (2006) The genus Azospirillum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol. 5: Proteobacteria: Alpha and Beta Subclasses. Springer, New York, USA, pp 114–140

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hurek T, Reinhold-Hurek B, van Montagu M, Kellenberger E (1991) Infection of intact roots of Kallar grass and rice seedlings by Azoarcus. In: Polsinelli M, Materassi R, Vincenzini M (eds) Nitrogen fixation. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 235–242

    Google Scholar 

  • Hurek T, Reinhold-Hurek B, Turner GL, Bergersen FJ (1994a) Augmented rates of respiration and efficient nitrogen fixation at nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72. J Bacteriol 176:4726–4733

    PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994b) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (1995) Identification of grass-associated and toluene-degrading diazotrophs, Azoarcus spp., by analyses of partial 16S ribosomal DNA sequences. Appl Environ Microbiol 61:2257–2261

    PubMed  CAS  Google Scholar 

  • Hurek T, Egener T, Reinhold-Hurek B (1997a) Divergence in nitrogenases of Azoarcus spp., proteobacteria of the beta subclass. J Bacteriol 179:4172–4178

    PubMed  CAS  Google Scholar 

  • Hurek T, Wagner B, Reinhold-Hurek B (1997b) Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339

    PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (1998) Interactions of Azoarcus sp. with rhizosphere fungi. In: Varma A, Hock B (eds) Mycorrhiza. 2nd. Springer, Berlin, Germany, pp 595–614

    Google Scholar 

  • Hurek T, Handlley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    PubMed  CAS  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    CAS  Google Scholar 

  • James EK, Olivares FL (1997) Infection and colonization of sugarcane and other gramineous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Google Scholar 

  • James EK, Olivares FL, Baldani JI, Döbereiner J (1997) Herbaspirillum, an endophytic diazotroph colonising vascular tissue in leaves of Sorghum bicolor L. Moench. J Exp Bot 48:785–797

    CAS  Google Scholar 

  • James EK, Olivares FL, de Oliveira AL, dos Reis FB Jr, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    PubMed  CAS  Google Scholar 

  • Jargeat P, Cosseau C, Ola'h B, Jauneau A, Bonfante P, Batut J, Becard G (2004) Isolation, free-living capacities, and genome structure of Candidatus Glomeribacter gigasporarum, the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884

    PubMed  CAS  Google Scholar 

  • Jiménez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63:3676–3683

    PubMed  Google Scholar 

  • Khammas KM, Ageron E, Grimont PA, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693

    PubMed  CAS  Google Scholar 

  • Kirchhof G, Baldani JI, Reis VM, Hartmann A (1998) Molecular assay to identify Acetobacter diazotrophicus and detect its occurrence in plant tissues. Can J Microbiol 44:12–19

    CAS  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M (2006) Bacterial endophytes as elicitirs of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial Root Endophytes/Soil Biology, vol. 9. Springer, Berlin, Heidelberg, pp 33–52

    Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weidner S, Puhler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391

    PubMed  CAS  Google Scholar 

  • Loganathan P, Sunita R, Parida AK, Nair S (1999) Isolation and characterization of two genetically distant groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L. Appl Environ Microbiol 87:167–172

    Google Scholar 

  • Magalhães-Cruz L, de Souza EM, Weber OB, Baldani JI, Döbereiner J, Pedrosa Fde O (2001) 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl Environ Microbiol 67:2375–2379

    PubMed  Google Scholar 

  • Magalhaes FM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cien 55:417–430

    Google Scholar 

  • McClung CR, van Berkum P, Davis RE, Sloger C (1983) Enumeration and localization of N2-Fixing bacteria associated with roots of Spartina alterniflora Loisel. Appl Environ Microbiol 45:1914–1920

    PubMed  CAS  Google Scholar 

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: A plant biologist's view. Austr J Plant Physiol 28:983–990

    Google Scholar 

  • Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact 19:502–511

    PubMed  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    PubMed  CAS  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing Clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586

    PubMed  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the [beta]-subclass of proteobacteria. Nature 411:948–950

    PubMed  CAS  Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in the tropics. Curr Sci 83:137–145

    CAS  Google Scholar 

  • Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiumi T, Nuntagij A, Kotepong S, Suzuki A, Higashi S, Abe M (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27

    PubMed  CAS  Google Scholar 

  • Nogueira EdM, Vinagre F, Masuda HP, Vargas C, de Pádua VLM, de Silva FR, de Santos RV, Baldani JI, Ferreira PCG, Hemerly AS (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet Mol Biol 24:199–206

    Google Scholar 

  • Okon Y (1994) Azospirillum-plant associations. Azospirillum-plant associations. CRC Press, Boca-Raton, Florida

    Google Scholar 

  • Okon Y, Labandera-Gonzalez C (1994) Agronomic applications of Azospirillum: An evaluation of 20 years world-wide field inoculation. Soil Biol Biochem 26:1591–1601

    CAS  Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fert Soils 21:197–200

    Google Scholar 

  • Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:723–737

    Google Scholar 

  • Oliveira OC, Urquiaga S, Boddey RM (1994) Burning cane: The long term effects. Int Sug J 96:272–275

    Google Scholar 

  • Oliviera E (1992) Estudo da associacao entre bacterias diazotroficas e arroz. Universidade Federal Rural do Rio de Janeiro. 135. Tese de Mestrado

    Google Scholar 

  • Patriquin DG, Döbereiner J, Jain DK (1983) Sites and process of association between diazotrophs and grasses. Can J Microbiol 29:900–915

    Article  Google Scholar 

  • Paula MA, Reis VM, Döbereiner J (1991) Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.) and sweet sorghum (Sorghum vulgare). Biol Fert Soils 11:111–115

    Google Scholar 

  • Perin L, Martinez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de Los Santos P, Reis VM, Caballero-Mellado J (2006) Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56:1931–1937

    PubMed  CAS  Google Scholar 

  • Pinõn D, Casas M, Blanch M, Fontaniella B, Blanco Y, Vicente C, Solas MT, Legaz ME (2002) Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol 153:345–351

    PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 175:7056–7065

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interaction of gramineous plants with Azoarcus spp. and other diazotrophs: Identification, localization and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 50:649–659

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S, Van Montagu M, Hurek T (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 19:181–188

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2007) Endophytic associations of Azoarcus spp. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, The Netherlands, pp 191–211

    Google Scholar 

  • Reinhold B, Hurek T, Niemann E-G, Fendrik I (1986) Close association of Azospirillum and diazotrophic rods with different root zones of Kallar Grass. Appl Environ Microbiol 52:520–526

    PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, Deley J (1987) Azospirillum halopraeferens sp. nov, a nitrogen fixing organism associated with roots of kallar grass (Leptochloa fusca (L) Kunth). Int J Syst Bacteriol 37:43–51

    Google Scholar 

  • Reinhold B, Hurek T (1988) Location of diazotrophs in the root interior with special attention to the Kallar grass association. Plant Soil 110:259–268

    Google Scholar 

  • Reis VM, Olivares FL, Doebereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotech 10:101–104

    Google Scholar 

  • Reis VM, de los Santos PE, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    PubMed  CAS  Google Scholar 

  • Reis VM, Lee S, Kennedy C (2007) Biological nitrogen fixation in sugarcane. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, The Netherlands, pp 213–232

    Google Scholar 

  • Reiter B, Burgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555

    PubMed  CAS  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Austr J Plant Physiol 28:829–836

    Google Scholar 

  • Riggs PJ, Moritz RL, Chelius MK, Dong Y, Iniguez AL, Kaeppler SM, Casler MD, Triplett EW (2002) Isolation and characterization of diazotrophic endophytes from grasses and their effects on plant growth. In: Finan TR, O'Brian MR, Layzell DB, Vessey JK, Newton WE (eds) Nitrogen fixation: Global perspectives, Proceedings of the 13th International Congress on Nitrogen Fixation. CABI Publishing, Wallingford, UK, pp 263–267

    Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    PubMed  CAS  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–279

    Google Scholar 

  • Rothballer M, Schmid M, Klein I, Gattinger A, Grundmann S, Hartmann A (2006) Herbaspirillum hiltneri sp. nov., isolated from surface-sterilized wheat roots. Int J Syst Evol Microbiol 56:1341–1348

    PubMed  CAS  Google Scholar 

  • Schank SC, Smith RL, Weiser GC, Zuberer DA, Bouton JH, Quesenberry KH, Tyler ME, Milam JR, Littel RC (1979) Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol Biochem 11:287–295

    Google Scholar 

  • Schloter M, Wiehe W, Aßmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    PubMed  CAS  Google Scholar 

  • Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studies with strain-specific monoclonal antibodies. Symbiosis 25:159–179

    Google Scholar 

  • Schmid M, Rothballer M, Aßmus B, Hutzler P, Schloter M, Hartmann A (2004) Detection of microbes by confocal laser scanning microscopy. In: Kowalchuk GA, de Bruijn FH, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular Microbial Ecology Manual II, vol 2. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 875–910

    Google Scholar 

  • Schmid M, Baldani I, Hartmann A (2006) The genus Herbaspirillum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 5: Proteobacteria: Alpha and Beta Subclasses. Springer, New York, USA, pp 141–150

    Google Scholar 

  • Schmid M, Hartmann A (2007) Molecular phylogeny and ecology of root associated diazotrophic alpha- and beta-proteobacteria. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, The Netherlands, pp 21–40

    Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acylhomoserine lactone–producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial Root Endophytes/Soil Biology, vol 9. Springer, Berlin, Heidelberg, pp 1–13

    Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif mutant strains. Mol Plant-Microbe Int 14:358–366

    CAS  Google Scholar 

  • Sly LI, Stackebrandt E (1999) Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int J Syst Bacteriol 49:541–544

    Article  Google Scholar 

  • Starkey RL (1958) Interrelations between micro-organisms and plant roots in the rhizosphere. Bacteriol Review 22:154–172

    CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    PubMed  CAS  Google Scholar 

  • Stephan MP, Oliveira M, Teixeira KRS, Martinez-Drets G, Döbereiner J (1991) Physiology and nitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 77:67–72

    CAS  Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 24:83–97

    PubMed  CAS  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–30

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: Potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    PubMed  CAS  Google Scholar 

  • Tapia-Hernandez A, Bustillos-Cristales MR, Jimenez-Salgado T, Caballero-Mellado J, Fuentes-Ramirez LE (2000) Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microb Ecol 39:49–55

    PubMed  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    PubMed  CAS  Google Scholar 

  • Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    PubMed  CAS  Google Scholar 

  • Trinick MJ (1980) Relationships amongst the fast -growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandifora and their affinities with other rhizobial groups. J Appl Bacteriol 49:39–53

    Google Scholar 

  • Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evolut Microbiol 56:1677–1680

    CAS  Google Scholar 

  • Triplett EW (2007) Prospects for significant nitrogen fixation in grasses from bacterial endophytes. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, The Netherlands, pp 303–314

    Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludena D, Mateos PF, Martinez-Molina E, Velázquez E (2005) Nodulation of Lupinus by strains of the new species Ochrobactrum lupini sp. nov. Appl. Environ Microbiol 71:1318–1327

    CAS  Google Scholar 

  • Umali-Garcia M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39:219–226

    PubMed  CAS  Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen balance estimates. Soil Sci Soc Am 56:105–114

    Article  Google Scholar 

  • Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual J-M (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983

    PubMed  CAS  Google Scholar 

  • van Overbeek LS, van Vuurde J, van Elsas JD (2006) Application of molecular fingerprinting techniques to explore the diversity of bacterial endophytic communities. In: Schulz B, Boyle C, Sieber TN (eds) Microbial Root Endophytes/Soil Biology, vol 9. Springer, Berlin, Heidelberg, pp 1–13

    Google Scholar 

  • Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    PubMed  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    PubMed  Google Scholar 

  • Verma SC, Chowdhury SP, Tripathi AK (2004a) Phylogeny based on 16S rDNA and nifH sequences of Ralstonia taiwanensis strains isolated from nitrogen-fixing nodules of Mimosa pudica, in India. Can J Microbiol 50:313–322

    PubMed  CAS  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004b) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429

    PubMed  CAS  Google Scholar 

  • Vermeiren H, Willems A, Schoofs G, de Mot R, Keijers V, Hai W, Vanderleyden J (1999) The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 22:215–224

    PubMed  CAS  Google Scholar 

  • von Bülow JFW, Döbereiner J (1975) Potential for nitrogen fixation in maize genotypes in Brazil Proc Natl Acad Sci USA 72:2389–2393

    Google Scholar 

  • Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309

    PubMed  CAS  Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Döbereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    CAS  Google Scholar 

  • Webster G, Jain V, Davey MR, Gough C, Vasse J, Denarie J, Cocking EC (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373–383

    CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotech Biochem 61:1244–1251

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv.trifolii and rice roots and assessment of potential to promote rice growth. Plant Soil 194:99–114

    CAS  Google Scholar 

  • You CB, Zhou FY (1989) Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 35:403–408

    Article  CAS  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological Nitrogen Fixation. Chapman & Hall, New York, London, pp 43–86

    Google Scholar 

  • Zhulin IB, Armitage JP (1993) Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J Bacteriol 175:952–958

    PubMed  CAS  Google Scholar 

  • Zhulin IB, Bespalov VA, Johnson MS, Taylor BL (1996) Oxygen taxis and proton motive force in Azospirillum brasilense. J Bacteriol 178:5199–5204

    PubMed  CAS  Google Scholar 

  • Zurdo-Pineiro JL, Rivas R, Trujillo ME, Vizcaino N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martinez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hartmann .

Editor information

Katharina Pawlowski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rothballer, M., Schmid, M., Hartmann, A. (2007). Diazotrophic Bacterial Endophytes in Gramineae and Other Plants. In: Pawlowski, K. (eds) Prokaryotic Symbionts in Plants. Microbiology Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_103

Download citation

Publish with us

Policies and ethics