Skip to main content

Effects of Changing Fire Regimes and Post-Fire Salvage Logging on Forest Ecosystems

  • Chapter
  • First Online:
The Handbook of Environmental Chemistry

Abstract

This chapter explores the changing fire regime with reasons and consequences for forest ecosystems as well as the wildfire effects on forest soils. Furthermore, the usage and effects of post-fire salvage logging have been analyzed. The three main reasons for fire regime changes with their effects are: (1) climate change, which reduces moisture in fuels and increases the chance of wildfire ignition; (2) rural depopulation and agricultural abandonment, which lead to fuel accumulation; and (3) current policies of wildfire management focusing on fire suppression rather than on its prevention. Due to the changing fire regime, wildfires are expected to further increase in size, severity, and frequency in the future. An adequate knowledge on wildfire prevention measures (e.g., prescribed fire, salvage logging, and afforestation with less flammable species) may help land managers to identify the most effective actions for specific forest ecosystems against the prevention of irreversible land degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. FAO (2020) Global Forest Resources Assessment 2020 – key findings. Rome. https://doi.org/10.4060/ca8753en

  2. Grammatikopoulou I, Vačkářová D (2021) The value of forest ecosystem services: a meta-analysis at the European scale and application to national ecosystem accounting. Ecosyst Serv 48:101262. https://doi.org/10.1016/j.ecoser.2021.101262

    Article  Google Scholar 

  3. Jenkins M, Schaap B (2018) Forest ecosystem services. Background Analy Stud 1. http://www.un.org/esa/forests/wp-content/uploads/2018/05/UNFF13_BkgdStudy_ ForestsEcoServices.pdf

  4. Oldekop J, Rasmussen L, Agrawal A, Bebbington A, Meyfroidt P, Bengston D et al (2020) Forest-linked livelihoods in a globalized world. Nat Plants 6(12):1400–1407. https://doi.org/10.1038/s41477-020-00814-9

    Article  Google Scholar 

  5. Lovrić M, Da Re R, Vidale E, Prokofieva I, Wong J, Pettenella D et al (2020) Non-wood forest products in Europe – a quantitative overview. Forest Policy Econ 116:102175. https://doi.org/10.1016/j.forpol.2020.102175

    Article  Google Scholar 

  6. Malhi Y, Meir P, Brown S (2002) Forests, carbon and global climate. Philos Trans A Math Phys Eng Sci 360(1797):1567–1591. https://doi.org/10.1098/rsta.2002.1020

    Article  Google Scholar 

  7. Pan Y, Birdsey R, Fang J, Houghton R, Kauppi P, Kurz W et al (2011) A large and persistent carbon sink in the World’s forests. Science 333(6045):988–993. https://doi.org/10.1126/science.1201609

    Article  Google Scholar 

  8. Jie C, Jing-zhang C, Man-zhi T, Zi-tong G (2002) Soil degradation: a global problem endangering sustainable development. J Geogr Sci 12(2):243–252. https://doi.org/10.1007/bf02837480

    Article  Google Scholar 

  9. Rodrigues A, Marques S, Botequim B, Marto M, Borges J (2021) Forest management for optimizing soil protection: a landscape-level approach. For Ecosyst 8(1). https://doi.org/10.1186/s40663-021-00324-w

  10. Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K et al (2022) The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54:438–447. https://doi.org/10.1016/j.envsci.2015.08.012.2022

    Article  Google Scholar 

  11. Ma B, Yu X, Ma F, Li Z, Wu F (2014) Effects of crop canopies on rain splash detachment. PloS One 9(7):e99717. https://doi.org/10.1371/journal.pone.0099717

    Article  Google Scholar 

  12. Suprayogo D, Hairiah K, Meilasari N, Rabbani A, Ishaq R, van Noordwijk M (2020) Infiltration-friendly land uses for climate resilience on volcanic slopes in the Rejoso watershed, East Java, Indonesia. https://doi.org/10.5194/hess-2020-2

  13. Santiago L, Goldstein G, Meinzer F, Fownes J, Mueller-Dombois D (2000) Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiol 20(10):673–681. https://doi.org/10.1093/treephys/20.10.673

    Article  Google Scholar 

  14. Hairiah K, Widianto W, Suprayogo D, Van Noordwijk M (2022) Tree roots anchoring and binding soil: reducing landslide risk in Indonesian agroforestry

    Google Scholar 

  15. Elliot WJ, Page-Dumroese D, Robichaud PR (1999) The effects of forest management on erosion and soil productivity. In: Rattan R (ed) Soil quality and soil erosion. CRC Press, pp 195–209

    Google Scholar 

  16. Malvar M, Silva F, Prats S, Vieira D, Coelho C, Keizer J (2017) Short-term effects of post-fire salvage logging on runoff and soil erosion. For Ecol Manage 400:555–567. https://doi.org/10.1016/j.foreco.2017.06.031

    Article  Google Scholar 

  17. Wagenbrenner J, MacDonald L, Coats R, Robichaud P, Brown R (2015) Effects of post-fire salvage logging and a skid trail treatment on ground cover, soils, and sediment production in the interior western United States. For Ecol Manage 335:176–193. https://doi.org/10.1016/j.foreco.2014.09.016

    Article  Google Scholar 

  18. San-Miguel-Ayanz J, Durrant T, Boca R European Commission, Joint Research Centre (2020) Forest fires in Europe, Middle East and North Africa, https://data.europa.eu/doi/10.2760/059331

  19. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E et al (2011) Landscape – wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92(10):2389–2402. https://doi.org/10.1016/j.jenvman.2011.06.028

    Article  Google Scholar 

  20. Pastor A, Nunes J, Ciampalini R, Koopmans M, Baartman J, Huard F et al (2022) Projecting future impacts of global change including fires on soil erosion to anticipate better land management in the forests of NW Portugal

    Google Scholar 

  21. Krebs P, Pezzatti G, Mazzoleni S, Talbot L, Conedera M (2010) Fire regime: history and definition of a key concept in disturbance ecology. Theory Biosci 129(1):53–69. https://doi.org/10.1007/s12064-010-0082-z

    Article  Google Scholar 

  22. Pausas J, Fernández-Muñoz S (2011) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110(1–2):215–226. https://doi.org/10.1007/s10584-011-0060-6

    Article  Google Scholar 

  23. Oo H, Zin W, Thin Kyi C (2022) Assessment of future climate change projections using multiple global climate models. Civil Eng J 5(10):2152–2166. https://doi.org/10.28991/cej-2019-03091401

    Article  Google Scholar 

  24. Planton S, Lionello P, Artale V, Aznar R, Carrillo A, Colin J et al (2012) The climate of the Mediterranean region in future climate projections. Clim Mediterranean Region 449:502

    Google Scholar 

  25. Kron W, Löw P, Kundzewicz Z (2019) Changes in risk of extreme weather events in Europe. Environ Sci Policy 100:74–83. https://doi.org/10.1016/j.envsci.2019.06.007

    Article  Google Scholar 

  26. Lindner et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259(4):698–709. https://doi.org/10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  27. Calheiros T, Pereira M, Nunes J (2021) Assessing impacts of future climate change on extreme fire weather and pyro-regions in Iberian Peninsula. Sci Total Environ 754:142233. https://doi.org/10.1016/j.scitotenv.2020.142233

    Article  Google Scholar 

  28. Keeley J, Syphard A (2016) Climate change and future fire regimes: examples from California. Geosciences 6(3):37. https://doi.org/10.3390/geosciences6030037

    Article  Google Scholar 

  29. Fernández C, Fontúrbel T, Vega J (2021) Cumulative effects of salvage logging and slash removal on erosion, soil functioning indicators and vegetation in a severely burned area in NW Spain. Geoderma 393:115004. https://doi.org/10.1016/j.geoderma.2021.115004

    Article  Google Scholar 

  30. Marino E, Hernando C, Planelles R, Madrigal J, Guijarro M, Sebastián A (2014) Forest fuel management for wildfire prevention in Spain: a quantitative SWOT analysis. Int J Wildland Fire 23(3):373. https://doi.org/10.1071/wf12203

    Article  Google Scholar 

  31. Czubala Ostapiuk M, Regidor M, Hermosa C (2022) Rural depopulation in Spain: next generation eu as a stimulus to accelerate the transformation. J Lib Int Aff 8(1):211–228. https://doi.org/10.47305/jlia2281211co

    Article  Google Scholar 

  32. Montiel-Molina C, Vilar L, Sequeira C, Karlsson O, Galiana-Martín L, Madrazo-García de Lomana G, Palacios-Estremera M (2019) Have historical land use/land cover changes triggered a fire regime shift in Central Spain? Fire 2(3):44. https://doi.org/10.3390/fire2030044

    Article  Google Scholar 

  33. Shakesby R (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105(3–4):71–100. https://doi.org/10.1016/j.earscirev.2011.01.001

    Article  Google Scholar 

  34. Fernandes P (2013) Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc Urban Plan 110:175–182. https://doi.org/10.1016/j.landurbplan.2012.10.014

    Article  Google Scholar 

  35. Montiel C, Galiana L (2005) Forest policy and land planning policy in Spain: a regional approach. Forest Policy Econ 7(2):131–142. https://doi.org/10.1016/s1389-9341(03)00026-1

    Article  Google Scholar 

  36. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143(1):1–10. https://doi.org/10.1007/s00442-004-1788-8

    Article  Google Scholar 

  37. Coelho C, Ferreira A, Boulet A, Keizer J (2004) Overland flow generation processes, erosion yields and solute loss following different intensity fires. Q J Eng Geol Hydrogeol 37(3):233–240. https://doi.org/10.1144/1470-9236/03-043

    Article  Google Scholar 

  38. Benavides-Solorio J, MacDonald L (2005) Measurement and prediction of post-fire erosion at the hillslope scale, Colorado front range. Int J Wildland Fire 14(4):457. https://doi.org/10.1071/wf05042

    Article  Google Scholar 

  39. Blake D, Nyman P, Nice H, D'Souza F, Kavazos C, Horwitz P (2020) Assessment of post-wildfire erosion risk and effects on water quality in South-Western Australia. Int J Wildland Fire 29(3):240. https://doi.org/10.1071/wf18123

    Article  Google Scholar 

  40. Depountis N, Michalopoulou M, Kavoura K, Nikolakopoulos K, Sabatakakis N (2020) Estimating soil erosion rate changes in areas affected by wildfires. ISPRS Int J Geo Inf 9(10):562. https://doi.org/10.3390/ijgi9100562

    Article  Google Scholar 

  41. Varela M, Benito E, Keizer J (2010) Wildfire effects on soil erodibility of woodlands in NW Spain. Land Degrad Dev 21(2):75–82. https://doi.org/10.1002/ldr.896

    Article  Google Scholar 

  42. Shakesby R, Doerr S (2006) Wildfire as a hydrological and geomorphological agent. Earth Sci Rev 74(3–4):269–307. https://doi.org/10.1016/j.earscirev.2005.10.006

    Article  Google Scholar 

  43. Llovet J, Ruiz-Valera M, Josa R, Vallejo VR (2009) Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment. Int J Wildland Fire 18:222–232

    Google Scholar 

  44. Homann P, Bormann B, Darbyshire R, Morrissette B (2011) Forest soil carbon and nitrogen losses associated with wildfire and prescribed fire. Soil Sci Soc Am J 75(5):1926–1934. https://doi.org/10.2136/sssaj2010-0429

    Article  Google Scholar 

  45. Johnson D, Murphy J, Walker R, Glass D, Miller W (2007) Wildfire effects on forest carbon and nutrient budgets. Ecol Eng 31(3):183–192. https://doi.org/10.1016/j.ecoleng.2007.03.003

    Article  Google Scholar 

  46. Murphy J, Johnson D, Miller W, Walker R, Carroll E, Blank R (2006) Wildfire effects on soil nutrients and leaching in a Tahoe Basin watershed. J Environ Qual 35(2):479–489. https://doi.org/10.2134/jeq2005.0144

    Article  Google Scholar 

  47. Litton CM, Santelices RÓMULO (2003) Effect of wildfire on soil physical and chemical properties in a Nothofagus glauca forest, Chile. Revista Chilena de Historia Nat 76(4):529–542

    Google Scholar 

  48. Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 2019:1–9. https://doi.org/10.1155/2019/5794869

    Article  Google Scholar 

  49. Baudena M, Santana V, Baeza M, Bautista S, Eppinga M, Hemerik L et al (2019) Increased aridity drives post-fire recovery of Mediterranean forests towards open shrublands. New Phytol 225(4):1500–1515. https://doi.org/10.1111/nph.16252

    Article  Google Scholar 

  50. Vasques A, Baudena M, Vallejo V, Kéfi S, Bautista S, Santana V et al (2022) Post-fire regeneration traits of understory shrub species modulate successional responses to high severity fire in Mediterranean pine forests. Ecosystems. https://doi.org/10.1007/s10021-022-00750-z

  51. Pardini G, Gispert M, Dunjo G (2004) Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain. Sci Total Environ 328(1–3):237–246. https://doi.org/10.1016/j.scitotenv.2004.01.026

    Article  Google Scholar 

  52. Lindenmayer DB, Burton PJ, Franklin JF (2008) Salvage logging and its ecological consequences. Island Press, Washington

    Google Scholar 

  53. Leverkus A, Buma B, Wagenbrenner J, Burton P, Lingua E, Marzano R, Thorn S (2021) Tamm review: does salvage logging mitigate subsequent forest disturbances? For Ecol Manage 481:118721. https://doi.org/10.1016/j.foreco.2020.118721

    Article  Google Scholar 

  54. García-Orenes F, Arcenegui V, Chrenková K, Mataix-Solera J, Moltó J, Jara-Navarro A, Torres M (2017) Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: a two year monitoring research. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.02.090

  55. Haas J, Schack-Kirchner H, Lang F (2020) Modeling soil erosion after mechanized logging operations on steep terrain in the northern Black Forest, Germany. Eur J For Res 139(4):549–565. https://doi.org/10.1007/s10342-020-01269-5

    Article  Google Scholar 

  56. Leverkus A, Lorite J, Navarro F, Sánchez-Cañete E, Castro J (2014) Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities

    Google Scholar 

  57. Mayer M, Rosinger C, Gorfer M, Berger H, Deltedesco E, Bässler C et al (2022) Surviving trees and deadwood moderate changes in soil fungal communities and associated functioning after natural forest disturbance and salvage logging. Soil Biol Biochem 166:108558. https://doi.org/10.1016/j.soilbio.2022.108558

    Article  Google Scholar 

  58. Nazari M, Eteghadipour M, Zarebanadkouki M, Ghorbani M, Dippold M, Bilyera N, Zamanian K (2021) Impacts of logging-associated compaction on forest soils: a meta-analysis. Front For Global Change 4. https://doi.org/10.3389/ffgc.2021.780074

  59. Wagenbrenner J, Robichaud P, Brown R (2016) Rill erosion in burned and salvage logged western montane forests: effects of logging equipment type, traffic level, and slash treatment. J Hydrol 541:889–901. https://doi.org/10.1016/j.jhydrol.2016.07.049

    Article  Google Scholar 

  60. Olsen W, Wagenbrenner J, Robichaud P (2020) Factors affecting connectivity and sediment yields following wildfire and post-fire salvage logging in California’s Sierra Nevada. Hydrol Process 35(1). https://doi.org/10.1002/hyp.13984

  61. Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability – a literature analysis. Soil Biol Biochem 41(1):1–12. https://doi.org/10.1016/j.soilbio.2008.09.015

    Article  Google Scholar 

  62. James C, Krumland B (2018) Immediate post–forest fire salvage logging, soil erosion, and sediment delivery. For Sci 64(3):246–267. https://doi.org/10.1093/forsci/fxx013

    Article  Google Scholar 

  63. Borrelli P, Panagos P, Langhammer J, Apostol B, Schütt B (2016) Assessment of the cover changes and the soil loss potential in European forestland: first approach to derive indicators to capture the ecological impacts on soil-related forest ecosystems Ecol Indic 60:1208–1220. https://doi.org/10.1016/j.ecolind.2015.08.053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Esteban Lucas-Borja .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Pagter, T., Zema, D.A., Navidi, M., Baartman, J.E.M., Lucas-Borja, M.E. (2023). Effects of Changing Fire Regimes and Post-Fire Salvage Logging on Forest Ecosystems. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2023_987

Download citation

  • DOI: https://doi.org/10.1007/698_2023_987

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics