Skip to main content

Rainwater Harvesting for Potable Water Supply: Opportunities and Challenges

  • Chapter
  • First Online:
Alternative Water Sources for Producing Potable Water

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 124))

Abstract

Rainwater harvesting systems are used worldwide for potable water supply, stormwater reduction, and groundwater recharge. This chapter is dedicated to urban rainwater harvesting for potable water supply, with a focus on the new/advanced system. This chapter presents an overview of worldwide urban rainwater harvesting systems, factors that influence rainwater harvesting system selection, basic design principles, water quality assessment of harvested rainwater, positive and negative aspects of the system, reliability and economic analysis, modeling application, and moving toward a smart water city. Then, it summarizes the roles of city planners, architects, and engineers and contributes to the decision support system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morote Á-F, Hernández M, Eslamian S (2021) Rainwater interest in urban areas of Europe, the state of art (1980–2016). In: Handbook of water harvesting and conservation. pp 407–427

    Google Scholar 

  2. BSI (2009) BSI BS 8515:2009 rainwater harvesting systems – code of practice. British Standard Institution, Reino Unido

    Google Scholar 

  3. BSI (2018) On-site non-potable water systems. Systems for the use of rainwater. BS EN 16941-1:2018

    Google Scholar 

  4. Gould J, Qiang ZHU, Yuanhong LI (2014) Using every last drop: rainwater harvesting and utilization in Gansu Province, China. Waterlines 33:107–119

    Article  Google Scholar 

  5. Wirojanagud P, Vanvarothorn V (1990) Jars and tanks for rainwater storage in rural Thailand. Waterlines 8(3):29e32

    Article  Google Scholar 

  6. BNBC (2020) Bangladesh national building code. Ministry of Housing and Public Works

    Google Scholar 

  7. Ali S, Sang Y-F (2023) Implementing rainwater harvesting systems as a novel approach for saving water and energy in flat urban areas. Sustain Cities Soc 89:104304. https://doi.org/10.1016/j.scs.2022.104304

    Article  Google Scholar 

  8. Jayasooriya VM, Perera VMM, Muthukumaran S (2020) Rainwater as an alternative drinking water source for the chronic kidney disease of uncertain etiology (CKDu) prone areas: a case study for Girandurukotte, Sri Lanka. J Water Sanit Hyg Dev 10:539–548. https://doi.org/10.2166/washdev.2020.085

    Article  Google Scholar 

  9. UNwater (2023) Water Use Around the World

    Google Scholar 

  10. Lancaster B (2019) Rainwater harvesting for drylands and beyond, vol 1, 3rd edn

    Google Scholar 

  11. Eckersan R (2007) Rainwater harvesting and the plumbing codes, Plumbing Engineer, March 2007, available at http://www.plumbingengineer.com/march_07/rainwater.php. Accessed June 2023

  12. CSA (2022) CSA B805:22/ICC 805:2022 Rainwater harvesting systems. CSA Group

    Google Scholar 

  13. Burszta-Adamiak E, Spychalski P (2021) Water savings and reduction of costs through the use of a dual water supply system in a sports facility. Sustain Cities Soc 66:102620. https://doi.org/10.1016/j.scs.2020.102620

    Article  Google Scholar 

  14. Dallman S, Chaudhry AM, Muleta MK, Lee J (2016) The value of rain: benefit-cost analysis of rainwater harvesting systems. Water Resour Manag 30:4415–4428. https://doi.org/10.1007/s11269-016-1429-0

    Article  Google Scholar 

  15. Stec A, Kordana S (2015) Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems. Resour Conserv Recycl 105:84–94. https://doi.org/10.1016/j.resconrec.2015.10.006

    Article  Google Scholar 

  16. Suzanne D, Chaudhry AM, Muleta MK, Juneseok L (2021) Is rainwater harvesting worthwhile? A benefit–cost analysis. J Water Resour Plan Manag 147:4021011. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001361

    Article  Google Scholar 

  17. Diehl de Souza T, Ghisi E (2020) Harvesting rainwater from scaffolding platforms and walls to reduce potable water consumption at buildings construction sites. J Clean Prod 258:120909. https://doi.org/10.1016/j.jclepro.2020.120909

    Article  Google Scholar 

  18. Fewkes A (1999) The use of rainwater for WC flushing: the field testing of a collection system. Build Environ 34:765–772. https://doi.org/10.1016/S0360-1323(98)00063-8

    Article  Google Scholar 

  19. Fewkes A (2000) Modelling the performance of rainwater collection systems: towards a generalised approach. Urban Water 1:323–333. https://doi.org/10.1016/S1462-0758(00)00026-1

    Article  Google Scholar 

  20. Okoye CO, Solyalı O, Akıntuğ B (2015) Optimal sizing of storage tanks in domestic rainwater harvesting systems: a linear programming approach. Resour Conserv Recycl 104:131–140. https://doi.org/10.1016/j.resconrec.2015.08.015

    Article  Google Scholar 

  21. Fonseca CR, Hidalgo V, Díaz-Delgado C, Vilchis-Francés AY, Gallego I (2017) Design of optimal tank size for rainwater harvesting systems through use of a web application and geo-referenced rainfall patterns. J Clean Prod 145:323–335. https://doi.org/10.1016/j.jclepro.2017.01.057

    Article  Google Scholar 

  22. Matos C, Santos C, Pereira S, Bentes I, Imteaz M (2013) Rainwater storage tank sizing: case study of a commercial building. Int J Sustain Built Environ 2:109–118. https://doi.org/10.1016/j.ijsbe.2014.04.004

    Article  Google Scholar 

  23. Imteaz MA, Shadeed S (2022) Superiority of water balance modelling for rainwater harvesting analysis and its application in deriving generalised equation for optimum tank size. J Clean Prod 342:130991. https://doi.org/10.1016/j.jclepro.2022.130991

    Article  Google Scholar 

  24. Betriebs-Fachvereinigung, Darmstadt P (2005) Greywater recycling. fbr Dialog GmbH Havelstr. 7 A 64295 Darmstadt. www.fbr.de info@fbr.de

  25. Sultana R (2022) Optimum tank size for large rainwater harvesting system. AWWA Water Sci 4:e1277. https://doi.org/10.1002/aws2.1277

    Article  Google Scholar 

  26. USEPA (2008) Managing wet weather with green infrastructure municipal handbook; EPA-833-F-08-010

    Google Scholar 

  27. Akter A (2022) Rainwater harvesting – building a water Smart City

    Google Scholar 

  28. Amin MT, Han MY (2009) Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS). Water Res 43:5225–5235. https://doi.org/10.1016/j.watres.2009.08.041

    Article  CAS  Google Scholar 

  29. DIP (2008) Department of Infrastructure and Planning (DIP) water saving targets. For Councils, Plumbers, Builders and Developers A Guide to the Queensland Development Code Part MP 42, Effective August 2008

    Google Scholar 

  30. Campisano A, Butler D, Ward S, Burns MJ, Friedler E, DeBusk K, Fisher-Jeffes LN, Ghisi E, Rahman A, Furumai H, Han M (2017) Urban rainwater harvesting systems: research, implementation and future perspectives. Water Res 115:195–209. https://doi.org/10.1016/j.watres.2017.02.056

    Article  CAS  Google Scholar 

  31. Haque MM, Rahman A, Samali B (2016) Evaluation of climate change impacts on rainwater harvesting. J Clean Prod 137:60–69. https://doi.org/10.1016/j.jclepro.2016.07.038

    Article  Google Scholar 

  32. Bocanegra-Martínez A, Ponce-Ortega JM, Nápoles-Rivera F, Serna-González M, Castro-Montoya AJ, El-Halwagi MM (2014) Optimal design of rainwater collecting systems for domestic use into a residential development. Resour Conserv Recycl 84:44–56. https://doi.org/10.1016/j.resconrec.2014.01.001

    Article  Google Scholar 

  33. Akter A, Ahmed S (2021) Rainwater harvesting potentials for a water-scarce city in Bangladesh. Proc Inst Civ Eng Water Manag 174:84–98. https://doi.org/10.1680/jwama.19.00030

    Article  Google Scholar 

  34. Islam MM, Afrin S, Tarek MH, Rahman MM (2021) Reliability and financial feasibility assessment of a community rainwater harvesting system considering precipitation variability due to climate change. J Environ Manage 289:112507. https://doi.org/10.1016/j.jenvman.2021.112507

    Article  Google Scholar 

  35. Geraldi MS, Ghisi E (2017) Influence of the length of rainfall time series on rainwater harvesting systems: a case study in Berlin. Resour Conserv Recycl 125:169–180. https://doi.org/10.1016/j.resconrec.2017.06.011

    Article  Google Scholar 

  36. Lo KFA, Koralegedara SB (2015) Effects of climate change on urban rainwater harvesting in Colombo City, Sri Lanka. Environments 2:105–124

    Article  Google Scholar 

  37. Santos C, Imteaz MA, Ghisi E, Matos C (2020) The effect of climate change on domestic rainwater harvesting. Sci Total Environ 729:138967. https://doi.org/10.1016/j.scitotenv.2020.138967

    Article  CAS  Google Scholar 

  38. Shadmehri Toosi A, Danesh S, Ghasemi Tousi E, Doulabian S (2020) Annual and seasonal reliability of urban rainwater harvesting system under climate change. Sustain Cities Soc 63:102427. https://doi.org/10.1016/j.scs.2020.102427

    Article  Google Scholar 

  39. Wallace CD, Bailey RT, Arabi M (2015) Rainwater catchment system design using simulated future climate data. J Hydrol 529:1798–1809. https://doi.org/10.1016/j.jhydrol.2015.08.006

    Article  Google Scholar 

  40. Lee JH, Julien PY, Cho J, Lee S, Kim J, Kang W (2023) Rainfall erosivity variability over the United States associated with large-scale climate variations by El Niño/southern oscillation. Catena 226:107050. https://doi.org/10.1016/j.catena.2023.107050

    Article  Google Scholar 

  41. Chapa F, Krauss M, Hack J (2020) A multi-parameter method to quantify the potential of roof rainwater harvesting at regional levels in areas with limited rainfall data. Resour Conserv Recycl 161:104959. https://doi.org/10.1016/j.resconrec.2020.104959

    Article  Google Scholar 

  42. Brudler S, Arnbjerg-Nielsen K, Hauschild MZ, Rygaard M (2016) Life cycle assessment of stormwater management in the context of climate change adaptation. Water Res 106:394–404. https://doi.org/10.1016/j.watres.2016.10.024

    Article  CAS  Google Scholar 

  43. Ghimire SR, Johnston JM, Ingwersen WW, Sojka S (2017) Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. J Clean Prod 151:74–86. https://doi.org/10.1016/j.jclepro.2017.02.025

    Article  CAS  Google Scholar 

  44. Hasik V, Anderson NE, Collinge WO, Thiel CL, Khanna V, Wirick J, Piacentini R, Landis AE, Bilec MM (2017) Evaluating the life cycle environmental benefits and trade-offs of water reuse systems for net-zero buildings. Environ Sci Technol 51:1110–1119. https://doi.org/10.1021/acs.est.6b03879

    Article  CAS  Google Scholar 

  45. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330. https://doi.org/10.1007/BF02978505

    Article  Google Scholar 

  46. Loubet P, Roux P, Bellon-Maurel V (2016) WaLA, a versatile model for the life cycle assessment of urban water systems: formalism and framework for a modular approach. Water Res 88:69–82. https://doi.org/10.1016/j.watres.2015.09.034

    Article  CAS  Google Scholar 

  47. Amores MJ, Meneses M, Pasqualino J, Antón A, Castells F (2013) Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. J Clean Prod 43:84–92. https://doi.org/10.1016/j.jclepro.2012.12.033

    Article  Google Scholar 

  48. Lemos D, Dias AC, Gabarrell X, Arroja L (2013) Environmental assessment of an urban water system. J Clean Prod 54:157–165. https://doi.org/10.1016/j.jclepro.2013.04.029

    Article  CAS  Google Scholar 

  49. Kizhisseri MI, Mohamed MM, Hamouda MA (2022) A mixed-integer optimization model for water sector planning and policy making in arid regions. Water Resour Ind 28:100193. https://doi.org/10.1016/j.wri.2022.100193

    Article  Google Scholar 

  50. Stec A, Zeleňáková M (2019) An analysis of the effectiveness of two rainwater harvesting systems located in Central Eastern Europe. Water 11

    Google Scholar 

  51. Domènech L, Saurí D (2011) A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the metropolitan area of Barcelona (Spain): social experience, drinking water savings and economic costs. J Clean Prod 19:598–608. https://doi.org/10.1016/j.jclepro.2010.11.010

    Article  Google Scholar 

  52. BSI (2013) British Standards Institute, 2013. Rainwater harvesting systems e code of practice BS 8515:2009þA1:2013

    Google Scholar 

  53. fbr (2002) Translation of DIN 1989-1:2001-10. Rainwater harvesting systems – part 1: planning, installation, operation and maintenance Fachvereinigung Betriebs – und Regenwassernutzung e.V., Darmstadt, Germany. 34 p

    Google Scholar 

  54. Degenhart J, Helmreich B (2022) Review on inorganic pollutants in stormwater runoff of non-metal roofs. Front Environ Chem:3

    Google Scholar 

  55. Dissanayake J, Han M (2021) The effect of number of tanks on water quality in rainwater harvesting systems under sudden contaminant input. Sci Total Environ 769:144553. https://doi.org/10.1016/j.scitotenv.2020.144553

    Article  CAS  Google Scholar 

  56. Mazurkiewicz K, Jeż-Walkowiak J, Michałkiewicz M (2022) Physicochemical and microbiological quality of rainwater harvested in underground retention tanks. Sci Total Environ 814:152701. https://doi.org/10.1016/j.scitotenv.2021.152701

    Article  CAS  Google Scholar 

  57. Olem H, Berthouex PM (1989) Acidic deposition and cistern drinking water supplies. Environ Sci Technol 23:333–340

    Article  CAS  Google Scholar 

  58. Zhang Q, Wang X, Hou P, Wan W, Li R, Ren Y, Ouyang Z (2014) Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China. J Environ Manage 132:178–187. https://doi.org/10.1016/j.jenvman.2013.11.009

    Article  Google Scholar 

  59. Akoto O, Appiah F, Boadi NO (2011) Physicochemical analysis of roof runoffs from the Obuasi area. Water Pract Technol 6:wpt2011003. https://doi.org/10.2166/wpt.2011.003

    Article  Google Scholar 

  60. van der Kooij D, Veenendaal HR, Scheffer WJH (2005) Biofilm formation and multiplication of legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Res 39:2789–2798. https://doi.org/10.1016/j.watres.2005.04.075

    Article  CAS  Google Scholar 

  61. Yaziz MI, Gunting H, Sapari N, Ghazali AW (1989) Variations in rainwater quality from roof catchments. Water Res 23:761–765. https://doi.org/10.1016/0043-1354(89)90211-X

    Article  CAS  Google Scholar 

  62. Naddeo V, Scannapieco D, Belgiorno V (2013) Enhanced drinking water supply through harvested rainwater treatment. J Hydrol 498:287–291. https://doi.org/10.1016/j.jhydrol.2013.06.012

    Article  CAS  Google Scholar 

  63. Senanu LD, Kranjac-Berisavljevic G, Cobbina SJ (2023) The use of local materials to remove heavy metals for household-scale drinking water treatment: a review. Environ Technol Innov 29:103005. https://doi.org/10.1016/j.eti.2023.103005

    Article  CAS  Google Scholar 

  64. Schang C, Schmidt J, Gao L, Bergmann D, McCormack T, Henry R, McCarthy D (2021) Rainwater for residential hot water supply: managing microbial risks. Sci Total Environ 782:146889. https://doi.org/10.1016/j.scitotenv.2021.146889

    Article  CAS  Google Scholar 

  65. Coombes PJ, Kuczera G (2003) Analysis of the performance of rainwater tanks in Australian capital cities. In: 28th international hydrology and water resources symposium. NSW, Australia. pp 1–8

    Google Scholar 

  66. Karim MR, Bashar MZI, Imteaz MA (2015) Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh. Resour Conserv Recycl 104:61–67. https://doi.org/10.1016/j.resconrec.2015.09.010

    Article  Google Scholar 

  67. Baek C, Coles N (2011) Defining reliability for rainwater harvesting systems. In: MODSIM2011 19th international congress on modelling and simulation, vol 1. Modelling and Simulation Society of Australia and New Zealand Inc, pp 3818–3824

    Google Scholar 

  68. Notaro V, Liuzzo L, Freni G (2016) Reliability analysis of rainwater harvesting systems in Southern Italy. Procedia Eng 162:373–380. https://doi.org/10.1016/j.proeng.2016.11.077

    Article  Google Scholar 

  69. Blank LT, Tarquin AJ (2012) Engineering economy.7th edn. McGraw-Hill

    Google Scholar 

  70. Khanal G, Maraseni T, Thapa A, Devkota N, Paudel UR, Khanal CK (2023) Managing water scarcity via rainwater harvesting system in Kathmandu Valley, Nepal: people’s awareness, implementation challenges and way forward. Environ Dev 46:100850. https://doi.org/10.1016/j.envdev.2023.100850

    Article  Google Scholar 

  71. Torres MN, Fontecha JE, Zhu Z, Walteros JL, Rodríguez JP (2020) A participatory approach based on stochastic optimization for the spatial allocation of sustainable urban drainage systems for rainwater harvesting. Environ Model Softw 123:104532. https://doi.org/10.1016/j.envsoft.2019.104532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysha Akter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akter, A. (2023). Rainwater Harvesting for Potable Water Supply: Opportunities and Challenges. In: Younos, T., Lee, J., Parece, T.E. (eds) Alternative Water Sources for Producing Potable Water. The Handbook of Environmental Chemistry, vol 124. Springer, Cham. https://doi.org/10.1007/698_2023_1018

Download citation

Publish with us

Policies and ethics