Skip to main content

Contribution of Land Runoff to the Release of Pesticides into Water Bodies in Arable Areas

  • Chapter
  • First Online:
Pesticides in Soils

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 113))

  • 590 Accesses

Abstract

The release of micropollutants into surface water bodies may be due to different pathways, including wastewater treatment plant effluent, combined sewer overflows and surface runoff. Many studies have dealt with the chemical characteristics of the first two types, whereas less attention has been paid to those of surface runoff in agricultural areas. Pesticides are the main micropollutants occurring in this stream and their impact on the receiving water body may be of great concern. In this context, the current chapter aims to provide a snapshot of the occurrence of common pesticides in the runoff of arable land and it discusses the main factors affecting their fate and behaviour once in the soil. Collected measured concentrations are compared with the corresponding predicted-no-effect concentrations in order to evaluate the potential risk due to surface runoff release into the receiving water body. It also presents some best practices that aim to mitigate their migration towards surface water. The chapter concludes with a focus on the main pesticides found in surface and groundwater in Italy, in particular in the Po Valley, and on the environmental risk posed by residues of a selection of pesticides in the surface water in two Spanish regions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma A, Kumar V, Shahzad B et al (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1:1–16. https://doi.org/10.1007/s42452-019-1485-1

    Article  CAS  Google Scholar 

  2. Ma C, Liu X, Wu X et al (2021) Kinetics, mechanisms and toxicity of the degradation of imidaclothiz in soil and water. J Hazard Mater 403:124033. https://doi.org/10.1016/j.jhazmat.2020.124033

    Article  CAS  Google Scholar 

  3. Ou J, Li H, Ou X et al (2020) Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. Ecotoxicol Environ Saf 205:111374. https://doi.org/10.1016/j.ecoenv.2020.111374

    Article  CAS  Google Scholar 

  4. Willkommen S, Lange J, Ulrich U et al (2021) Field insights into leaching and transformation of pesticides and fluorescent tracers in agricultural soil. Sci Tot Environ 751:141658. https://doi.org/10.1016/j.scitotenv.2020.141658

    Article  CAS  Google Scholar 

  5. Carpio MJ, Rodríguez-Cruz MS, García-Delgado C et al (2020) Mobility monitoring of two herbicides in amended soils: a field study for modeling applications. J Environ Manage 260:110161. https://doi.org/10.1016/j.jenvman.2020.110161

    Article  CAS  Google Scholar 

  6. Li Z (2020) Spatiotemporal pattern models for bioaccumulation of pesticides in herbivores: an approximation theory for north American white-tailed deer. Sci Tot Environ 737:140271. https://doi.org/10.1016/j.scitotenv.2020.140271

    Article  CAS  Google Scholar 

  7. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009. Establishing a framework for community action to achieve the sustainable use of pesticides; Strasbourg, 2009

    Google Scholar 

  8. Directive 2013/39/EU of the European Parliament and of the Council, of 12 August 2013. Amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy (text with EEA relevance); Brussels, 2013

    Google Scholar 

  9. Commission implementing decision (EU) 2015/495 of 20 March 2015. Establishing a watch list of substances for union-wide monitoring in the field of water policy pursuant to directive 2008/105/EC of the European Parliament and of the Council; Brussels, 2015

    Google Scholar 

  10. Commission implementing decision (EU) 2018/840 of 5 June 2018. Estabishing a watch list of substances of the European Parliament and of the Council and repealing commission implementing decision (EU) 2015/495; Brussels, 2018

    Google Scholar 

  11. Commission implementing decision (EU) 2020/1161 of 4 August 2020. Establishing a watch list of substances for union-wide monitoring in the field of water policy pursuant to directive 2008/105/EC of the European Parliament and of the Council; Brussels, 2020

    Google Scholar 

  12. Directive 2000/60/EC of the European Parliament and of the Council, of 23 October 2000. Enstablishing a framework for community action in the field of water policy; Luxembourg, 2000

    Google Scholar 

  13. Tröger R, Ren H, Yin D et al (2021) What’s in the water? – target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia. Wat Res 198:117099. https://doi.org/10.1016/j.watres.2021.117099

    Article  CAS  Google Scholar 

  14. Maggi F, la Cecilia D, Tang FHM et al (2020) The global environmental hazard of glyphosate use. Sci Tot Enviorn 717:137167. https://doi.org/10.1016/j.scitotenv.2020.137167

    Article  CAS  Google Scholar 

  15. Stehle S, Bub S, Schulz R (2018) Compilation and analysis of global surface water concentrations for individual insecticide compounds. Sci Tot Environ 639:516–525. https://doi.org/10.1016/j.scitotenv.2018.05.158

    Article  CAS  Google Scholar 

  16. Čelić M, Jaén-Gil A, Briceño-Guevara S et al (2021) Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks. J Hazard Mater 404:124102. https://doi.org/10.1016/j.jhazmat.2020.124102

    Article  CAS  Google Scholar 

  17. Herrero-Hernández E, Simón-Egea AB, Sánchez-Martín MJ et al (2020) Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the denomination of origin Jumilla. Environ Pollut 264:114666. https://doi.org/10.1016/j.envpol.2020.114666

    Article  CAS  Google Scholar 

  18. Vats S (2015) Herbicides: history, classification and genetic manipulation of plants for herbicide resistance. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Cham, pp 153–192

    Google Scholar 

  19. Xu J, Smith S, Smith G et al (2019) Glyphosate contamination in grains and foods: an overview. Food Control 106:106710

    Article  CAS  Google Scholar 

  20. Tschirley FH (1979) The role of pesticides in increasing agricultural production. In: Sheets TJ, Pimentel D (eds) Pesticides. Humana Press, Springer, Cham, pp 3–20

    Chapter  Google Scholar 

  21. Hollomon DW (2015) Fungicide resistance: 40 years on and still a major problem. In: Ishii H, Hollomon DW (eds) Fungicide resistance in plant pathogens. Springer, Tokyo, pp 3–11

    Chapter  Google Scholar 

  22. Aznar-Alemany Ò, Eljarrat E (2020) Introduction to pyrethroid insecticides: chemical structures, properties, mode of action and use. In: Eljarrat E (ed) Handbook of environmental chemistry. Springer, Cham, pp 1–16

    Google Scholar 

  23. Morrissey CA, Mineau P, Devries JH et al (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303. https://doi.org/10.1016/j.envint.2014.10.024

    Article  CAS  Google Scholar 

  24. Afzal I, Javed T, Amirkhani M (2020) Modern seed technology: seed coating delivery systems for enhancing seed and crop performance. Agriculture 10(11):526. https://doi.org/10.3390/agriculture10110526

    Article  CAS  Google Scholar 

  25. Zhang WJ (2014) Integrated pest management and pesticide use. In: Pimentel D, Peshin R (eds) Integrated pest management: pesticide problems, vol 3. Springer, Dordrecht, pp 1–46

    Google Scholar 

  26. Lupi L, Bedmar F, Puricelli M et al (2019) Glyphosate runoff and its occurrence in rainwater and subsurface soil in the nearby area of agricultural fields in Argentina. Chemosphere 225:906–914. https://doi.org/10.1016/j.chemosphere.2019.03.090

    Article  CAS  Google Scholar 

  27. Jensen PK, Olesen MH (2014) Spray mass balance in pesticide application: a review. Crop Prot 61:23–31

    Article  Google Scholar 

  28. Khan SU, Wakeman RJ (2016) Pesticides in the soil environment. Elsevier Science, Amsterdam

    Google Scholar 

  29. Boulange J, Malhat F, Jaikaew P et al (2019) Portable rainfall simulator for plot-scale investigation of rainfall-runoff, and transport of sediment and pollutants. Int J Sediment Res 34:38–47. https://doi.org/10.1016/j.ijsrc.2018.08.003

    Article  Google Scholar 

  30. Caron E, Lafrance P, Auclair JC (2012) Temporal evolution of atrazine and metolachlor concentrations exported in runoff and subsurface water with vegetated filter strips. Agron Sustain Dev 32:935–943. https://doi.org/10.1007/s13593-012-0087-8

    Article  CAS  Google Scholar 

  31. Carretta L, Cardinali A, Marotta E et al (2019) A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub Μg/L level. J Chromatogr A 1600:65–72. https://doi.org/10.1016/j.chroma.2019.04.047

    Article  CAS  Google Scholar 

  32. Chrétien F, Giroux I, Thériault G et al (2017) Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field. Environ Pollut 224:255–264. https://doi.org/10.1016/j.envpol.2017.02.002

    Article  CAS  Google Scholar 

  33. Lefrancq M, Jadas-Hécart A, la Jeunesse I et al (2017) High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Sci Tot Environ 587–588:75–86. https://doi.org/10.1016/j.scitotenv.2017.02.022

    Article  CAS  Google Scholar 

  34. Milan M, Vidotto F, Piano S et al (2013) Buffer strip effect on terbuthylazine, desethyl-terbuthylazine and s-metolachlor runoff from maize fields in northern Italy. Environ Technol (UK) 34:71–80. https://doi.org/10.1080/09593330.2012.680919

    Article  CAS  Google Scholar 

  35. Niu YH, Li X, Wang HX et al (2020) Soil erosion-related transport of neonicotinoids in new citrus orchards. Agric Ecosyst Environ 290:106776. https://doi.org/10.1016/j.agee.2019.106776

    Article  CAS  Google Scholar 

  36. Otto S, Cardinali A, Marotta E et al (2012) Effect of vegetative filter strips on herbicide runoff under various types of rainfall. Chemosphere 88:113–119. https://doi.org/10.1016/j.chemosphere.2012.02.081

    Article  CAS  Google Scholar 

  37. Phillips BM, Cahn M, Voorhees JP et al (2021) An integrated vegetated treatment system for mitigating imidacloprid and permethrin in agricultural irrigation runoff. Toxics 9:1–13. https://doi.org/10.3390/toxics9010007

    Article  CAS  Google Scholar 

  38. Potter TL, Bosch DD, Strickland TC (2015) Tillage impact on herbicide loss by surface runoff and lateral subsurface flow. Sci Tot Environ 530–531:357–366. https://doi.org/10.1016/j.scitotenv.2015.05.079

    Article  CAS  Google Scholar 

  39. Potter TL, Bosch DD, Strickland TC (2014) Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA). Sci Tot Environ 490:1–10. https://doi.org/10.1016/j.scitotenv.2014.04.034

    Article  CAS  Google Scholar 

  40. Radolinski J, Wu J, Xia K et al (2019) Plants mediate precipitation-driven transport of a neonicotinoid pesticide. Chemosphere 222:445–452. https://doi.org/10.1016/j.chemosphere.2019.01.150

    Article  CAS  Google Scholar 

  41. Topaz T, Egozi R, Eshel G et al (2018) Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study. Sci Tot Environ 625:168–177. https://doi.org/10.1016/j.scitotenv.2017.12.213

    Article  CAS  Google Scholar 

  42. Wang Q, Li C, Chen C et al (2018) Effectiveness of narrow grass hedges in reducing atrazine runoff under different slope gradient conditions. Environ Sci Pollut Res 25:7672–7680. https://doi.org/10.1007/s11356-017-1087-7

    Article  CAS  Google Scholar 

  43. Yadav IC, Watanabe H (2018) Soil erosion and transport of imidacloprid and clothianidin in the upland field under simulated rainfall condition. Sci Tot Environ 640–641:1354–1364. https://doi.org/10.1016/j.scitotenv.2018.06.008

    Article  CAS  Google Scholar 

  44. Lafrance P, Caron E (2012) Impact of vegetated filter strips on sorbed herbicide concentrations and sorption equilibrium in agricultural plots. J Environ Sci Health Part B 47:967–974. https://doi.org/10.1080/03601234.2012.706565

    Article  CAS  Google Scholar 

  45. Nowell LH, Norman JE, Ingersoll CG et al (2016) Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides. Sci Tot Environ 550:835–850. https://doi.org/10.1016/j.scitotenv.2016.01.081

    Article  CAS  Google Scholar 

  46. Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields—a review. J Environ Qual 7:459–472. https://doi.org/10.2134/jeq1978.00472425000700040001x

    Article  CAS  Google Scholar 

  47. Hernando MD, Mezcua M, Fernández-Alba AR et al (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342. https://doi.org/10.1016/J.TALANTA.2005.09.037

    Article  CAS  Google Scholar 

  48. Calderon MJ, de Luna E, Gomez JA et al (2016) Herbicide monitoring in soil, runoff waters and sediments in an olive orchard. Sci Tot Environ 569–570:416–422. https://doi.org/10.1016/j.scitotenv.2016.06.126

    Article  CAS  Google Scholar 

  49. Prosser RS, Hoekstra PF, Gene S et al (2020) A review of the effectiveness of vegetated buffers to mitigate pesticide and nutrient transport into surface waters from agricultural areas. J Environ Manag 261:110210. https://doi.org/10.1016/j.jenvman.2020.110210

    Article  CAS  Google Scholar 

  50. US EPA (2010) Guidance for reporting on the environmental fate and transport of the stressors of concern in problem formulations

    Google Scholar 

  51. FAO (2000) Assessing soil contamination. A reference manual. FAO, Rome

    Google Scholar 

  52. Castle GD, Mills GA, Bakir A et al (2018) Measuring metaldehyde in surface waters in the UK using two monitoring approaches. Environ Sci Processes Impacts 20:1180–1190. https://doi.org/10.1039/c8em00180d

    Article  CAS  Google Scholar 

  53. Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339–357. https://doi.org/10.1002/ETC.5620080411

    Article  CAS  Google Scholar 

  54. Cui S, Hough R, Yates K (2020) Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: implications for pesticides monitoring. Sci Tot Environ 698:134228. https://doi.org/10.1016/j.scitotenv.2019.134228

    Article  CAS  Google Scholar 

  55. Sandin M, Piikki K, Jarvis N et al (2018) Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment. Sci Tot Environ 610–611:623–634. https://doi.org/10.1016/j.scitotenv.2017.08.068

    Article  CAS  Google Scholar 

  56. Dunn AM, Julien G, Ernst WR et al (2011) Evaluation of buffer zone effectiveness in mitigating the risks associated with agricultural runoff in Prince Edward Island. Sci Tot Environ 409:868–882. https://doi.org/10.1016/j.scitotenv.2010.11.011

    Article  CAS  Google Scholar 

  57. Stehle S, Dabrowski JM, Bangert U et al (2016) Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters. Sci Tot Environ 545–546:171–183. https://doi.org/10.1016/j.scitotenv.2015.12.077

    Article  CAS  Google Scholar 

  58. Sarkar B, Mukhopadhyay R, Mandal A et al (2020) Prasad MNV (ed) Sorption and desorption of agro-pesticides in soils. Butterworth-Heinemann, Elsevier, Amsterdam

    Chapter  Google Scholar 

  59. Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Tot Environ 505:409–422. https://doi.org/10.1016/j.scitotenv.2014.09.090

    Article  CAS  Google Scholar 

  60. Zhang P, Ren C, Sun H et al (2018) Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci Tot Environ 615:59–69. https://doi.org/10.1016/j.scitotenv.2017.09.097

    Article  CAS  Google Scholar 

  61. Verlicchi P, Ghirardini A (2019) A review of selected microcontaminants and microorganisms in land runoff and tile drainage in treated sludge-amended soils. Sci Tot Environ 655:939–957. https://doi.org/10.1016/j.scitotenv.2018.11.249

    Article  CAS  Google Scholar 

  62. ISPRA (2020) Rapporto Nazionale Pesticidi nelle Acque, dati 2017-2018 n.334 (in Italian). ISBN 978-88-448-0986-7

    Google Scholar 

  63. ISPRA (2018) Rapporto Nazionale Pesticidi nelle Acque, dati 2015-2016 n.282 (in Italian). ISBN 9788844808488

    Google Scholar 

  64. D. Lgs 13 Ottobre 2015, n. 172. Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque. (15G00186) (GU Serie Generale n.250 Del 27-10-2015)

    Google Scholar 

  65. Decision no. 2008/105/EC on environmental quality standards in the field of water policy, amending and subsequently repealing council directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending directive 2000/60/EC; Strasbourg, 2008

    Google Scholar 

  66. D. Lgs. 16 Marzo 2009, n.30. Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento. (GU Serie Generale n.79 Del 04-04-2009)

    Google Scholar 

  67. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration; Strasbourg, 2006

    Google Scholar 

  68. Otto S, Pappalardo SE, Cardinali A et al (2016) Vegetated ditches for the mitigation of pesticides runoff in the Po Valley. PLoS One 11:1–14. https://doi.org/10.1371/journal.pone.0153287

    Article  CAS  Google Scholar 

  69. Čelić M, Gros M, Farré M et al (2019) Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain). Sci Tot Environ 652:952–963. https://doi.org/10.1016/j.scitotenv.2018.10.290

    Article  CAS  Google Scholar 

  70. Verlicchi P, Ghirardini A (2019) Occurrence of micropollutants in wastewater and evaluation of their removal efficiency in treatment trains: the influence of the adopted sampling mode. Water 11:1152. https://doi.org/10.3390/w11061152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Verlicchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verlicchi, P., Ghirardini, A. (2021). Contribution of Land Runoff to the Release of Pesticides into Water Bodies in Arable Areas. In: Rodríguez-Cruz, M.S., Sánchez-Martín, M.J. (eds) Pesticides in Soils. The Handbook of Environmental Chemistry, vol 113. Springer, Cham. https://doi.org/10.1007/698_2021_802

Download citation

Publish with us

Policies and ethics